problems in the classification

조회 수: 11 (최근 30일)
felipe gonzalez
felipe gonzalez 2015년 5월 21일
댓글: Greg Heath 2015년 5월 24일
hello matlab community ..... I'm working with a neural network capable of classifying patterns, I have no one to turn to ... my network is not ranking very well .... it classifies all results in just a standard ... and in fact I have to classify three types ... if someone can help me to improve this algortimo'll be very grateful not know where I am going wrong ... I am so frustrated right now ... thank you
clear all close all clc
n = input('enter the first layer of neurons number\n') ;
m = input('enter the number of the neurons of the second layer\n') ;
a = input('digite 1-(40),2-(45),3-(50),4-(60),5-(70),6-(80) \n') ;
p = input('enter the number of samples you want to test\n') ;
switch a
case 1
[x] = xlsread('d_40S.xlsx') ;
case 2
[x] = xlsread('d_45S.xlsx') ;
case 3
[x] = xlsread('d_50S.xlsx') ;
case 4
[x] = xlsread('d_60S.xlsx') ;
case 5
[x] = xlsread('d_70S.xlsx') ;
case 6
[x] = xlsread('d_80S.xlsx') ;
end
[y] = xlsread('target_3eS.xlsx') ;
[w,k] = size(y) ;
%grouping the data matrix and target
matriz_dados = [x y] ;
%scrambling the matrix so as to become more random
dados = permutation(matriz_dados) ;
[l,c] = size(dados) ;
%separating training samples and testing randomly
idx = randperm(l);
id_teste = (idx <= p) ;
id_treino = (idx > p) ;
%matrix with complete set of data
dado_treino = dados(id_treino,:) ; %sample for training
dado_teste = dados(id_teste,:) ; %Test sample
%samples for training
dadotreino = dado_treino(:,1:c-k)' ;
tagtreino = dado_treino(:,c-(k-1):c)' ;
%samples for validation
dadoteste = dado_teste(:,1:c-k)' ;
tagteste = dado_teste(:,c-(k-1):c)' ;
%---------------------------------------------------------
rede = network ; %network name
rede.numinputs = 1 ;%amount of input that the network layers have
rede.numlayers = 3; %number of network layers that have
rede.biasConnect = [1; 1;1] ;%Is defined now the layers that have associated bias
%1 = will bias,0 =You will not have bias
rede.inputConnect = [1 ;0 ;0] ;%connecting the inputs network layers
rede.layerConnect = [0 0 0 ; 1 0 0;0 1 0] ;%Connection between layers
rede.outputConnect = [0 0 1] ;%layers that have connection with the output
rede.inputs{1}.range = [0 1] ;% maximum and minimum value that can take the variables
t = c -(c-k) ;
rede.inputs{1}.size = c-k ;
rede.layers{1}.size = n ;
rede.layers{2}.size = m ;
rede.layers{3}.size = t ;
for j=1:t
rede.layers{j}.transferFcn ='logsig' ;
rede.layers{j}.initFcn = 'initnw' ;
end
rede.performFcn = 'mse';
rede.trainFcn = 'trainrp';
rede.trainParam.epochs = 10000 ;
rede.view
rede = init(rede) ;
train_rede = train(rede,dadotreino,tagtreino) ;
output = rede(dadoteste) ;
output_final = vec2ind(output)' ;
% Y = sim(rede, dadoteste) ; % z = vec2ind(Y)' ;
tagtest2 = vec2ind(tagteste)' ;
M = confusionmat(tagtest2,output_final)

채택된 답변

Greg Heath
Greg Heath 2015년 5월 24일
help patternnet
doc patternnet
Search the NEWSGROUP and ANSWERS
greg patternnet
If you go to
help nndatasets
doc nndatasets
and choose a classification/pattern-recognition data set,
I will compare yor patternnet results with mine.
Hope this helps.
Thank you for formally accepting my answer
Greg
  댓글 수: 2
felipe gonzalez
felipe gonzalez 2015년 5월 24일
there is something wrong in the algorithm, lake that can be added to improve the quality of results ..... thank you ... any help is welcome
Greg Heath
Greg Heath 2015년 5월 24일
See my previous patternnet posts in the NEWSGROUP and ANSWERS

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by