Info
이 질문은 마감되었습니다. 편집하거나 답변을 올리려면 질문을 다시 여십시오.
Creating CNN architecture for binary classification
조회 수: 5 (최근 30일)
이전 댓글 표시
I’m reaching out to kindly ask if somone could review the CNN architecture I’ve implemented in MATLAB. The code is running as expected, but I’d appreciate your expert opinion to confirm whether the structure is sound and appropriate for the task.
Below is a snippet of the architecture and training configuration:
matlab
CopyEdit
%% === CNN Architecture ===
layers = [
sequenceInputLayer(1, 'Name', 'input', 'MinLength', minTrainLen)
convolution1dLayer(5, 32, 'Padding', 'same', 'Name', 'conv1')
batchNormalizationLayer('Name', 'bn1')
reluLayer('Name', 'relu1')
maxPooling1dLayer(2, 'Stride', 2, 'Name', 'pool1')
convolution1dLayer(3, 64, 'Padding', 'same', 'Name', 'conv2')
batchNormalizationLayer('Name', 'bn2')
reluLayer('Name', 'relu2')
dropoutLayer(0.3, 'Name', 'dropout1')
globalAveragePooling1dLayer('Name', 'gap')
fullyConnectedLayer(32, 'Name', 'fc1')
reluLayer('Name', 'relu3')
fullyConnectedLayer(2, 'Name', 'fc_output')
softmaxLayer('Name', 'softmax')
classificationLayer('Name', 'output')
];
%% === Training Options ===
options = trainingOptions('adam', ...
'InitialLearnRate', 1e-3, ...
'MaxEpochs', 30, ...
'MiniBatchSize', max(1, min(64, numel(XTrainFinal))), ...
'Shuffle', 'every-epoch', ...
'ValidationData', {XVal, YVal}, ...
'ValidationFrequency', 5, ...
'ValidationPatience', 2, ...
'Verbose', false, ...
'Plots', 'none', ...
'ExecutionEnvironment', 'auto');
답변 (0개)
이 질문은 마감되었습니다.
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!