Why did I get incorrect values when solving this equation using the fourth order Runge-Kutta Method?

조회 수: 4 (최근 30일)
This is my equation,
And this is my code,
B = 30; % width of mouth, Ba + Bb = B
Y = 17600000; % surface area of the lagoon
a = 0.1; % tidal amplitude
g = 9.81; % gravitational accelaration
Cd = 0.03; % drag coefficient
L = 500; % length of the channel, La = Lb = L
H = 3; % mean depths of the mouth, Ha = Hb = H
Qf = 30; % net fresh water supply
T = 12.42*3600; % tidal period (the time it takes for a full tidal cycle)
etao_data = [0.020391;0.031391;0.043391]; % for 10min
etao_time = 0:300:10*60;
dt= 1;
t_s = 0:dt:10*60;
etao_star= interp1(etao_time,etao_data,t_s,'spline');
P = ((g * B^2 * T^2 * H^3) / (Y^2 * L * Cd * a))^5;
S = T * Qf / (a * Y);
n = length(t_s);
etal_star_17 = zeros(1, n); % Initialize eta_l_star
etal_star_17(1) = 0; % Initial condition
for i = 1:n-1
eta_o = etao_star(i);
eta_l = etal_star_17(i);
eta_m = (eta_o +eta_l)/2;
f = @(t, eta) P* ((1 + (a * eta_m / H)).^(1.5)) ./ (sqrt(1 + ((H/ (2 * Cd * L)) * (1+ (a * eta_m / H))))).* ((eta_o - eta_l) ./ sqrt(abs(eta_o - eta_l)))+ S;
k1 = dt* f(t_s(i), eta_l);
k2 = dt* f(t_s(i) + dt/2, eta_l * k1 / 2);
k3 = dt* f(t_s(i) + dt/2, eta_l * k2 / 2);
k4 = dt* f(t_s(i)+ dt , eta_l + k3);
etal_star_17(i+1) = eta_l + (k1 + 2*k2 + 2*k3 + k4)/6;
end
  댓글 수: 6
Torsten
Torsten 2025년 4월 6일
편집: Torsten 2025년 4월 6일
Either use
k1 = f(t_s(i), eta_l);
k2 = f(t_s(i) + dt/2, eta_l + dt * k1 / 2);
k3 = f(t_s(i) + dt/2, eta_l + dt * k2 / 2);
k4 = f(t_s(i)+ dt , eta_l + dt * k3);
etal_star_17(i+1) = eta_l + dt * (k1 + 2*k2 + 2*k3 + k4)/6;
or
k1 = dt* f(t_s(i), eta_l);
k2 = dt* f(t_s(i) + dt/2, eta_l + k1 / 2);
k3 = dt* f(t_s(i) + dt/2, eta_l + k2 / 2);
k4 = dt* f(t_s(i)+ dt , eta_l + k3);
etal_star_17(i+1) = eta_l + (k1 + 2*k2 + 2*k3 + k4)/6;
The version you found is wrong.
Further, your function f = @(t, eta) does not depend on the input variable "eta". Thus you will have to use
f = @(t, eta) P* ((1 + (a * eta_m / H)).^(1.5)) ./ (sqrt(1 + ((H/ (2 * Cd * L)) * (1+ (a * eta_m / H))))).* ((eta_o - eta) ./ sqrt(abs(eta_o - eta)))+ S;
instead of
f = @(t, eta) P* ((1 + (a * eta_m / H)).^(1.5)) ./ (sqrt(1 + ((H/ (2 * Cd * L)) * (1+ (a * eta_m / H))))).* ((eta_o - eta_l) ./ sqrt(abs(eta_o - eta_l)))+ S;
or something even more complicated since eta_m also depends on eta_l:
f = @(t, eta) P* ((1 + (a * (eta_o + eta)/2 / H)).^(1.5)) ./ (sqrt(1 + ((H/ (2 * Cd * L)) * (1+ (a * (eta_o + eta)/2 / H))))).* ((eta_o - eta) ./ sqrt(abs(eta_o - eta)))+ S;

댓글을 달려면 로그인하십시오.

채택된 답변

VBBV
VBBV 2025년 4월 6일
편집: VBBV 2025년 4월 6일
@Sajani there are some missing values for the equation. Also the exponent in equation is 0.5
B = 30; % width of mouth, Ba + Bb = B
Y = 17600000; % surface area of the lagoon
a = 0.1; % tidal amplitude
g = 9.81; % gravitational accelaration
Cd = 0.03; % drag coefficient
L = 500; % length of the channel, La = Lb = L
H = 3; % mean depths of the mouth, Ha = Hb = H
Qf = 30; % net fresh water supply
T = 12.42*3600; % tidal period (the time it takes for a full tidal cycle)
etao_data = [0.020391;0.031391;0.043391]; % for 10min
etao_time = 0:300:10*60;
dt= 1;
t_s = 0:dt:10*60;
etao_star= interp1(etao_time,etao_data,t_s,'spline');
P = ((g * B^2 * T^2 * H^3) / (Y^2 * L * Cd * a))^0.5;
% ---vv
A = 3; % a value
S = T * Qf / (a * A);
n = length(t_s);
etal_star_17 = zeros(1, n); % Initialize eta_l_star
etal_star_17(1) = 0; % Initial condition
for i = 1:n-1
eta_o = etao_star(i);
eta_l = etal_star_17(i);
eta_m = (eta_o +eta_l)/2;
f = @(t, eta) P* ((1 + (a * eta_m / H)).^(1.5)) ./ (sqrt(1 + ((H/ (2 * Cd * L)) * (1+ (a * eta_m / H))))).* ((eta_o - eta_l) ./ sqrt(abs(eta_o - eta_l)))+ S;
k1 = dt* f(t_s(i), eta_l);
k2 = dt* f(t_s(i) + dt/2, eta_l * k1 / 2);
k3 = dt* f(t_s(i) + dt/2, eta_l * k2 / 2);
k4 = dt* f(t_s(i)+ dt , eta_l + k3);
etal_star_17(i+1) = eta_l + (k1 + 2*k2 + 2*k3 + k4)/6;
end
%Y = 17600000; % surface area of the lagoona = 0.1; % tidal amplitudeg = 9.81; % gravitational accelarationCd = 0.03; % drag coefficientL = 500; % length of the channel, La = Lb = LH = 3; % mean depths of the mouth, Ha = Hb = HQf = 30; % net fresh water supplyT = 12.42*3600; % tidal period (the time it takes for a full tidal cycle)etao_data = [0.020391;0.031391;0.043391]; % for 10minetao_time = 0:300:10*60;dt= 1;t_s = 0:dt:10*60;etao_star= interp1(etao_time,etao_data,t_s,'spline');P = ((g * B^2 * T^2 * H^3) / (Y^2 * L * Cd * a))^5;S = T * Qf / (a * Y);n = length(t_s);etal_star_17 = zeros(1, n); % Initialize eta_l_staretal_star_17(1) = 0; % Initial conditionfor i = 1:n-1 eta_o = etao_star(i); eta_l = etal_star_17(i); eta_m = (eta_o +eta_l)/2; f = @(t, eta) P* ((1 + (a * eta_m / H)).^(1.5)) ./ (sqrt(1 + ((H/ (2 * Cd * L)) * (1+ (a * eta_m / H))))).* ((eta_o - eta_l) ./ sqrt(abs(eta_o - eta_l)))+ S; k1 = dt* f(t_s(i), eta_l); k2 = dt* f(t_s(i) + dt/2, eta_l * k1 / 2); k3 = dt* f(t_s(i) + dt/2, eta_l * k2 / 2); k4 = dt* f(t_s(i)+ dt , eta_l + k3); etal_star_17(i+1) = eta_l + (k1 + 2*k2 + 2*k3 + k4)/6;end

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Physics에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by