Most efficient way to vertically concatenate numeric data?

조회 수: 3 (최근 30일)
SA-W
SA-W 2025년 4월 1일
댓글: Walter Roberson 2025년 4월 3일
In the profiled output picture below, mergedDataPerRank is a cell array storing 53 double matrices with size (6300, 33). Using vertcat, it takes approx. 0.5 seconds (20 calls) to vertically concatenate the data. Is there a more efficient way to do this or is 0.5 seconds already fairly good?
  댓글 수: 4
Konstantin
Konstantin 2025년 4월 3일
편집: Konstantin 2025년 4월 3일
But what is "Merge_filesAcrossRanks"? It looks like it is some your own custom function to read a lot of files in a given directory. If it is so (and if the size of all tables is quaranteed a priori), then I would recommend to combine reading and merging: just preallocate the whole final matrix (53*6300 tall, 33 wide), create a "current position (line)" variable, and then read files into this table while advancing the "current position".
Walter Roberson
Walter Roberson 2025년 4월 3일
That approach turns out to be slower.
nmat = 53;
nrow = 6300;
ncol = 33;
rng(12345)
tic
C = cell(nmat, 1);
for K = 1 : nmat; C{K} = rand(nrow, ncol); end
R1 = vertcat(C{:});
t1 = toc;
rng(12345);
R2 = zeros(nmat*nrow,ncol);
counter = 1;
for K = 1 : nmat; R2(counter:counter+nrow-1,:) = rand(nrow, ncol); counter = counter + nrow; end
t2 = toc;
format long g
[t1, t2]
ans = 1×2
0.159601 0.273057
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>

댓글을 달려면 로그인하십시오.

답변 (0개)

카테고리

Help CenterFile Exchange에서 Creating and Concatenating Matrices에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by