Hello I am solving a lp problem and linprog shows the wrong answer. If I solve it with fmincon, I get the answer.

조회 수: 5 (최근 30일)
H= @(i,j) exp(-abs(i-j)); % anonymous function
m= 4; noise_pow= 1e-9;
g= [15; 12; 9; 6];
A= [-H(1,1), g(1)*H(2,1), g(1)*H(3,1), g(1)*H(4,1);...
g(2)*H(1,2), -H(2,2), g(2)*H(3,2), g(2)*H(4,2);...
g(3)*H(1,3), g(3)*H(2,3), -H(3,3), g(3)*H(4,3);...;
g(4)*H(1,4), g(4)*H(2,4), g(4)*H(3,4),-H(4,4)];
b= -g*noise_pow;
LB= [0;0;0;0];
%% linprog
c= [1 1 1 1];
[x,fval]= linprog(c,A,b,[],[],LB) % linprog
Optimal solution found.
x = 4×1
0 0 0 0
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
fval = 0
%% fmincon
objfun= @(x) sum(x); % anonymous function
x0= [0;0;0;0];
[x,fval]= fmincon(objfun,x0,A,b,[],[],LB) % fmincon
Local minimum found that satisfies the constraints. Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.
x = 4×1
1.0e-08 * 0.1033 0.0393 0.0370 0.1526
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
fval = 3.3217e-09

답변 (1개)

John D'Errico
John D'Errico 2024년 12월 9일
편집: John D'Errico 2024년 12월 9일
H= @(i,j) exp(-abs(i-j)); % anonymous function
m= 4; noise_pow= 1e-9;
g= [15; 12; 9; 6];
A= [-H(1,1), g(1)*H(2,1), g(1)*H(3,1), g(1)*H(4,1);...
g(2)*H(1,2), -H(2,2), g(2)*H(3,2), g(2)*H(4,2);...
g(3)*H(1,3), g(3)*H(2,3), -H(3,3), g(3)*H(4,3);...;
g(4)*H(1,4), g(4)*H(2,4), g(4)*H(3,4),-H(4,4)];
b= -g*noise_pow;
LB= [0;0;0;0];
%% linprog
c= [1 1 1 1];
[x,fval]= linprog(c,A,b,[],[],LB) % linprog
Optimal solution found.
x = 4×1
0 0 0 0
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
fval = 0
%% fmincon
objfun= @(x) sum(x); % anonymous function
x0= [0;0;0;0];
[x,fval]= fmincon(objfun,x0,A,b,[],[],LB) % fmincon
Local minimum found that satisfies the constraints. Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.
x = 4×1
1.0e-08 * 0.1033 0.0393 0.0370 0.1526
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
fval = 3.3217e-09
You get a SLIGHTLY DIFFERENT answer from linprog, versus fmincon. The fmincon result is the same, just within the tolerances you specified, so it stopped when it got close.
Is one of the better than the other? Absolutely YES. The objective function value for the linprog solution is LOWER than that from fmincon. ergo, linprog did a better job of solving the problem, finding the exact solution to the problem in this case.
Is all zeros an entirely valid solution to the problem? YES!
Case closed. Linprog was right, you are wrong. At least in terms of the problem you posed. ;-)
  댓글 수: 3
Steven Lord
Steven Lord 2024년 12월 9일
Is the linprog solution feasible to within the default ConstraintTolerance specified on its documentation page? That noise_pow term is pretty small, smaller than the constraint tolerances.

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Solver Outputs and Iterative Display에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by