checkGradients, but the objective function has two inputs: x and xdata?

조회 수: 2 (최근 30일)
Benjamin
Benjamin 2024년 11월 14일
댓글: Torsten 2024년 11월 21일
I'm using lsqcurvefit with the following objective function and Jacobian:
function [f, jacF] = semiCircle(p, Q)
P0 = p(1);
Q0 = p(2);
r = p(3);
f = P0 + sqrt(r^2 - (Q-Q0).^2);
if nargout > 1 % need Jacobian
jacF = [1, (Q-Q0)./sqrt(r^2-(Q0-Q).^2), r./sqrt(r^2-(Q0-Q).^2)];
end
end
I'd like to use checkGradients to verify if the Jacobian is correct. However, all of the examples in the documentation just have objective functions with one input, the parameters 'x'. Whereas my function semiCircle has two inputs: the parameters 'p' and the xdata 'Q'. Is there a way to use checkGradients for such a function?

채택된 답변

Torsten
Torsten 2024년 11월 14일
valid = checkGradients(@(p)semiCircle(p, Q),p0)
  댓글 수: 10
Benjamin
Benjamin 2024년 11월 21일
편집: Torsten 2024년 11월 21일
I reached my daily uploads limit, so I'll just put the functions here:
load('data.mat')
Vb_ll_rms = 690;
% Inital guess
p10 = 5e6;
p20 = 2.5e7;
p30 = 3e7;
p0 = [p10, p20, p30];
[Rls, Xls, Vgls, gradientCheck] = lsqcurvefitNLS(p0, Q, P, Vb_ll_rms)
Rls = 0.0024
Xls = 0.0238
Vgls = 689.9365
gradientCheck = logical
1
function [R, X, Vg, gradientCheck] = lsqcurvefitNLS(p0, Q, P, Vo)
% Box constraints
p1_ub = min(P);
p2_lb = max(Q);
p3_lb = max(Q) - min(Q);
lb = [0, p2_lb, p3_lb];
ub = [p1_ub, inf, inf];
% Linear constraints
A = [0, 1, -1];
b = min(Q);
gradientCheck = checkGradients(@(p)semiCircle(p,Q),p0);
options = optimoptions('lsqcurvefit','Display','off','SpecifyObjectiveGradient',true);
p = lsqcurvefit(@semiCircle, p0, Q, P, lb, ub, A, b, [], [], [], options);
P0 = p(1);
Q0 = p(2);
r = p(3);
R = P0/(P0^2 + Q0^2)*Vo^2;
X = Q0/(P0^2 + Q0^2)*Vo^2;
Vg = sqrt(r^2/(P0^2 + Q0^2)*Vo^2);
end
And the other one:
function [f, jacF] = semiCircle(p, Q)
P0 = p(1);
Q0 = p(2);
r = p(3);
f = P0 + sqrt(r^2 - (Q-Q0).^2);
if nargout > 1 % need Jacobian
jacF = zeros(length(Q), length(p));
for i = 1:length(Q)
jacF(i,:) = [1, (Q(i)-Q0)/sqrt(r^2-(Q0-Q(i))^2), r/sqrt(r^2-(Q0-Q(i))^2)];
end
end
end
Torsten
Torsten 2024년 11월 21일
As you said: the code works fine with R2024b.
But note that the call to "lsqcurvefit" has changed in R2023a to the actual call that you use in the code. So if your desktop MATLAB version is older than R2023a, linear constraints (A,b) are not yet accepted.

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Systems of Nonlinear Equations에 대해 자세히 알아보기

제품


릴리스

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by