ONNX export of RNN / LSTM network

조회 수: 7 (최근 30일)
Vincent
Vincent 2024년 11월 12일
댓글: Vincent 2024년 11월 21일
I have a standard LSTM neural network created with the deep learning toolbox.
I export it with the ONNX format with the matlab exportONNXNetwork function.
I then import it via python with onnxruntime: import onnxruntime as ort // session = ort.InferenceSession(onnx_model_path)
Then, when I check session.get_inputs()[0], I see only the data input as unique input. It seems that the states can not be specified. Do you know how to handle the state of the recurrent neural network (especially in closed-loop mode) when using the onnxruntime session.run function?

답변 (1개)

aditi bagora
aditi bagora 2024년 11월 21일
Since, you have exported the model in ONXX format with the matlab 'exportONNXNetwork' . You can handle the states by defining model outputs ensuring the model outputs the necessary hidden states. To handle these states, update them with the outputs generated from session.run() at each step, feeding them back into the model for subsequent inferences.
  댓글 수: 1
Vincent
Vincent 2024년 11월 21일
"You can handle the states by defining model outputs ensuring the model outputs the necessary hidden states." ==> This should be done in the matlab definition of the RNN?

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Image Data Workflows에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by