KS TEST fails at 0.05 but passes at 0.01
조회 수: 7 (최근 30일)
이전 댓글 표시
Hello, I need some help in verifying the KSTEST method, which i implemented in the code. I have attached the data file and compared the theoretical CDF with ECDF using beta distribution. the KSTEST fails at 95% of significance while it passes at 99% (tight range). Can any one please check whether my method of implementing KS test is correct or wrong? and if my way interpretation is wrong then?
R = load('R.txt')
figure
h1 = histogram(R(1:end),20,'Normalization','cdf');
[f,x] = ecdf(R);
pd_12 = betacdf(x,a_mle,b_mle); % theoretical
[h2,p,ksstat] = kstest(R,'CDF', makedist('Beta','a',a_mle,'b',b_mle),'Alpha',0.01)
J = plot(x,pd_12,'b','Linewidth',2); grid on;
hold on
plot(x,f,'LineStyle', '-', 'Color', 'r','Linewidth',2)
legend('Histogram of data','Theoretical Beta CDF','ECDF of data','Location','best')
댓글 수: 2
the cyclist
2024년 10월 15일
편집: the cyclist
2024년 10월 15일
We need a_mle and b_mle to test your code. Is it the coefficients from
betafit(R)
?
채택된 답변
the cyclist
2024년 10월 15일
R = load('R.txt');
coeff = betafit(R);
a_mle = coeff(1);
b_mle = coeff(2);
[~,x] = ecdf(R);
pd_12 = betacdf(x,a_mle,b_mle); % theoretical
[h_05,p_05,ksstat_05] = kstest(R,'CDF', makedist('Beta','a',a_mle,'b',b_mle),'Alpha',0.05)
[h_01,p_01,ksstat_01] = kstest(R,'CDF', makedist('Beta','a',a_mle,'b',b_mle),'Alpha',0.01)
It is unclear to me what you mean by "pass" and "fail" the test, or by "tight range".
The P-value of the K-S test is equal to 0.0142. Therefore,
- if alpha is 0.05, the null hypothesis is rejected (h=1)
- if alpha is 0.01, the null hypothesis is not rejected (h=0)
So, I guess you were interpreting the output incorrectly?
댓글 수: 7
the cyclist
2024년 10월 17일
It's a strange way to think about it. If you exclude elements that would have been expected from random draws from those distributions, then it makes the null distributions less likely to be accepted.
That being said, if you want to limit R to only those values smaller than R_threshold, then
R_limited = R(R < R_threshold)
is that set of values.
추가 답변 (0개)
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!