Error during training: Invalid training data. Y must be a vector of categorical responses.

조회 수: 4 (최근 30일)
am using single image as input for cnn for segmentation above error am getting please help me to resolve
  댓글 수: 3
champaka MD
champaka MD 2024년 9월 13일
편집: Walter Roberson 2024년 9월 13일
% Load image and label mask
img = imread('2a.png'); % Replace with your actual image path
labelMask = imread('2a.png'); % Replace with your actual mask path
% Ensure the mask is 2D if it has more than 1 channel
if size(labelMask, 3) > 1
labelMask = rgb2gray(labelMask); % Convert RGB mask to grayscale if needed
end
% Convert image to single precision
XTrain = im2single(img);
% Check dimensions of the image
[height, width, numChannels] = size(XTrain);
% Reshape XTrain
XTrain = reshape(XTrain, [height, width, numChannels, 1]); % Adjust dimensions
% Ensure the mask is uint8 for class labeling
labelMask = uint8(labelMask);
% Check unique values in the mask for debugging
uniqueValues = unique(labelMask);
disp('Unique values in labelMask:');
disp(uniqueValues);
% Define number of classes (for VOC dataset, it is 21 classes including background)
numClasses = 21;
% Ensure all values in the mask are within the range [0, numClasses-1]
if any(labelMask(:) >= numClasses)
disp('Found values outside valid class range. Clipping them to valid range.');
labelMask(labelMask >= numClasses) = numClasses - 1; % Clip invalid values to the maximum class
end
% Convert the mask to categorical
YTrain = categorical(labelMask, 0:numClasses-1); % Convert to categorical
% Flatten YTrain to a vector
YTrain = reshape(YTrain, [], 1);
% Debugging: Display sizes of XTrain and YTrain
disp('Debugging Information:');
disp(['XTrain size: ', mat2str(size(XTrain))]);
disp(['YTrain size: ', mat2str(size(YTrain))]);
% Define CNN Architecture (same as before)
layers = [
imageInputLayer([height width numChannels], 'Name', 'input', 'Normalization', 'none')
convolution2dLayer(3, 16, 'Padding', 'same', 'Name', 'conv1')
reluLayer('Name', 'relu1')
maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool1')
convolution2dLayer(3, 32, 'Padding', 'same', 'Name', 'conv3')
reluLayer('Name', 'relu3')
transposedConv2dLayer(2, 32, 'Stride', 2, 'Name', 'upconv1')
reluLayer('Name', 'relu7')
convolution2dLayer(1, numClasses, 'Name', 'conv7')
softmaxLayer('Name', 'softmax')
pixelClassificationLayer('Name', 'pixelClassification')
];
% Set training options
options = trainingOptions('sgdm', ...
'InitialLearnRate', 1e-4, ...
'MaxEpochs', 10, ...
'Verbose', true, ...
'Plots', 'training-progress');
% Train the network
try
net = trainNetwork(XTrain, YTrain, layers, options);
disp('Training completed successfully.');
catch ME
disp('Error during training:');
disp(ME.message);
end
champaka MD
champaka MD 2024년 9월 13일
편집: Walter Roberson 2024년 9월 13일
% Load image and label mask
img = imread('2a.png'); % Replace with your actual image path
labelMask = imread('2a.png'); % Replace with your actual mask path
% Ensure the mask is 2D if it has more than 1 channel
if size(labelMask, 3) > 1
labelMask = rgb2gray(labelMask); % Convert RGB mask to grayscale if needed
end
% Convert image to single precision
XTrain = im2single(img);
% Check dimensions of the image
[height, width, numChannels] = size(XTrain);
% Ensure all values in the mask are within the range [0, numClasses-1]
uniqueValues = unique(labelMask);
disp('Unique values in labelMask:');
disp(uniqueValues);
% Define number of classes (for VOC dataset, it is 21 classes including background)
numClasses = 21;
% Ensure all values in the mask are within the range [0, numClasses-1]
labelMask(labelMask >= numClasses) = numClasses - 1; % Clip invalid values to the maximum class
% Convert the mask to categorical
YTrain = categorical(labelMask, 0:numClasses-1); % Convert to categorical
% Debugging: Display sizes of XTrain and YTrain before any reshaping
disp('Debugging Information:');
disp(['XTrain size: ', mat2str(size(XTrain))]);
disp(['YTrain size: ', mat2str(size(YTrain))]);
% Flatten YTrain only if needed to match the network's output shape
YTrain = reshape(YTrain, [height, width]); % Match the 2D structure of the image
% Debugging: Check the final sizes of XTrain and YTrain
disp(['Final XTrain size: ', mat2str(size(XTrain))]);
disp(['Final YTrain size: ', mat2str(size(YTrain))]);
% Define CNN Architecture (same as before)
layers = [
imageInputLayer([height width numChannels], 'Name', 'input', 'Normalization', 'none')
convolution2dLayer(3, 16, 'Padding', 'same', 'Name', 'conv1')
reluLayer('Name', 'relu1')
maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool1')
convolution2dLayer(3, 32, 'Padding', 'same', 'Name', 'conv3')
reluLayer('Name', 'relu3')
transposedConv2dLayer(2, 32, 'Stride', 2, 'Name', 'upconv1')
reluLayer('Name', 'relu7')
convolution2dLayer(1, numClasses, 'Name', 'conv7')
softmaxLayer('Name', 'softmax')
pixelClassificationLayer('Name', 'pixelClassification')
];
% Set training options
options = trainingOptions('sgdm', ...
'InitialLearnRate', 1e-4, ...
'MaxEpochs', 10, ...
'Verbose', true, ...
'Plots', 'training-progress');
% Train the network
try
net = trainNetwork(XTrain, YTrain, layers, options);
disp('Training completed successfully.');
catch ME
disp('Error during training:');
disp(ME.message);
end

댓글을 달려면 로그인하십시오.

답변 (1개)

Taylor
Taylor 2024년 9월 13일
It looks like you are trying to train a network for image segmentation using only a single image as training data. This will not be effective. I would recommend reading through some of the documentation to determine the best approach based on the images you are trying to segment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by