错误使用 dlfeval ,要求导的值必须为带跟踪的 dlarray 标量。

조회 수: 26 (최근 30일)
张
2024년 8월 30일
댓글: 2024년 8월 30일
classdef TD3Agent < handle
properties
actor
critic
actor_lr
critic_lr
target_actor
target_critic
replay_buffer
discount_factor
tau
policy_noise
noise_clip
policy_delay
end
methods
function obj = TD3Agent(state_dim, action_dim, max_action, actor_lr, critic_lr, discount_factor, tau, policy_noise, noise_clip, policy_delay)
obj.actor = ActorNetwork(state_dim, action_dim, max_action);
obj.critic = CriticNetwork(state_dim, action_dim);
obj.target_actor = ActorNetwork(state_dim, action_dim, max_action);
obj.target_critic = CriticNetwork(state_dim, action_dim);
obj.replay_buffer = ReplayBuffer(1000000, state_dim, action_dim);
obj.discount_factor = discount_factor;
obj.tau = tau;
obj.policy_noise = policy_noise;
obj.noise_clip = noise_clip;
obj.policy_delay = policy_delay;
obj.critic_lr = critic_lr;
obj.actor_lr = actor_lr;
% 初始化目标网络权重与Actor网络一致
obj.target_actor.net.Learnables.Value = obj.actor.net.Learnables.Value;
obj.target_critic.net.Learnables.Value = obj.critic.net.Learnables.Value;
end
function action = selectAction(obj, state)
action = obj.actor.forward(state);
noise = obj.policy_noise * randn(size(action));
noise = max(min(noise, obj.noise_clip), -obj.noise_clip);
action = action + noise;
action = max(min(action, 1), -1); % 保持动作在[-1, 1]范围内
end
function train(obj, batch_size)
[states, actions, rewards, next_states, done] = obj.replay_buffer.sample(batch_size);
% 使用dlfeval计算Critic梯度
critic_gradients = dlfeval(@(s, a, r, ns, d) obj.computeCriticGradients(s, a, r, ns, d), ...
states, actions, rewards, next_states, done);
% 更新Critic网络
critic_optimizer = adamupdate('LearnRate', obj.critic_lr, 'Beta1', 0.9, 'Beta2', 0.999);
[obj.critic.net, ~] = update(obj.critic.net, critic_gradients, critic_optimizer);
% 延迟更新Actor网络
if mod(batch_size, obj.policy_delay) == 0
actor_gradients = dlfeval(@(s) obj.computeActorGradients(s), states);
actor_optimizer = adamupdate('LearnRate', obj.actor_lr, 'Beta1', 0.9, 'Beta2', 0.999);
[obj.actor.net, ~] = update(obj.actor.net, actor_gradients, actor_optimizer);
% 更新目标网络
obj.updateTargetNetworks();
end
end
function gradients = computeCriticGradients(obj, states, actions, rewards, next_states, done)
loss = obj.compute_critic_loss(states, actions, rewards, next_states, done);
gradients = dlgradient(loss, obj.critic.net.Learnables);
end
function gradients = computeActorGradients(obj, states)
actor_actions = obj.actor.forward(states);
actor_loss = -mean(obj.critic.forward(states, actor_actions), 'all');
gradients = dlgradient(actor_loss, obj.actor.net.Learnables);
end
function loss = compute_critic_loss(obj, states, actions, rewards, next_states, done)
next_actions = obj.target_actor.forward(next_states);
noise = obj.policy_noise * randn(size(next_actions));
noise = max(min(noise, obj.noise_clip), -obj.noise_clip);
next_actions = next_actions + noise;
target_Q = obj.target_critic.forward(next_states, next_actions);
target_Q = rewards + (1 - done) .* obj.discount_factor .* target_Q;
current_Q = obj.critic.forward(states, actions);
loss = mean((current_Q - target_Q).^2, 'all');
loss = dlarray(loss, 'CB');
end
function updateTargetNetworks(obj)
obj.target_actor.net.Learnables.Value = obj.tau * obj.actor.net.Learnables.Value + ...
(1 - obj.tau) * obj.target_actor.net.Learnables.Value;
obj.target_critic.net.Learnables.Value = obj.tau * obj.critic.net.Learnables.Value + ...
(1 - obj.tau) * obj.target_critic.net.Learnables.Value;
end
end
end
  댓글 수: 1
张
2024년 8월 30일
[states, actions, rewards, next_states, done] = obj.replay_buffer.sample(batch_size);
% Convert data to dlarray转换之后问题仍没解决
states = dlarray(states, 'CB');
actions = dlarray(actions, 'CB');
rewards = dlarray(rewards, 'CB');
next_states = dlarray(next_states, 'CB');
done = dlarray(done, 'CB');

댓글을 달려면 로그인하십시오.

답변 (0개)

카테고리

Help CenterFile Exchange에서 Agents에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by