Plotting a system of fractional order differential equations

조회 수: 23 (최근 30일)
Naman
Naman 2024년 8월 2일
댓글: Naman 2024년 8월 13일

Hi. I have been trying to plot fractional order differential equations with MATLAB. I have tried to use this technique called "Predictor-Corrector Method" and got a code listing using AI. The code seems to be giving the plots, though they do not match with the expected results. I will attach the code listing below. But my question is how to actually plot such systems? Is there a standard method in-built, or a widely accepted add-on/package? Thanks. ```% Parameters alpha = 0.9; LAMBDA = 3; mu = 0.4; beta = 0.004; gamma = 0.0005; m = 0.03; n = 0.006; delta = 0.02; rho = 0.003; h = 0.1; % Time step T = 300; % Total time

% Time steps time = 0:h:T; time_steps = length(time);

% Initial conditions s = zeros(1, time_steps); i = zeros(1, time_steps); r = zeros(1, time_steps); s(1) = 85; i(1) = 3; r(1) = 0;

% Predictor-Corrector Method for k = 1:(time_steps - 1) % Predictor step (Adams-Bashforth) if k == 1 ds_pred = h * (LAMBDA - mu * s(k) - (beta * s(k) * i(k)) / (1 + gamma * i(k))); di_pred = h * ((beta * s(k) * i(k)) / (1 + gamma * i(k)) - (m * i(k)) / (1 + n * i(k)) - (mu + delta + rho) * i(k)); dr_pred = h * ((m * i(k)) / (1 + n * i(k)) + delta * i(k) - mu * r(k)); else ds_pred = h / 2 * ((LAMBDA - mu * s(k) - (beta * s(k) * i(k)) / (1 + gamma * i(k))) + ... (LAMBDA - mu * s(k-1) - (beta * s(k-1) * i(k-1)) / (1 + gamma * i(k-1)))); di_pred = h / 2 * (((beta * s(k) * i(k)) / (1 + gamma * i(k)) - (m * i(k)) / (1 + n * i(k)) - (mu + delta + rho) * i(k)) + ... ((beta * s(k-1) * i(k-1)) / (1 + gamma * i(k-1)) - (m * i(k-1)) / (1 + n * i(k-1)) - (mu + delta + rho) * i(k-1))); dr_pred = h / 2 * (((m * i(k)) / (1 + n * i(k)) + delta * i(k) - mu * r(k)) + ... ((m * i(k-1)) / (1 + n * i(k-1)) + delta * i(k-1) - mu * r(k-1))); end

    % Update predicted values
    s(k + 1) = s(k) + ds_pred;
    i(k + 1) = i(k) + di_pred;
    r(k + 1) = r(k) + dr_pred;
    % Corrector step (Adams-Moulton)
    ds_corr = h / 2 * ((LAMBDA - mu * s(k + 1) - (beta * s(k + 1) * i(k + 1)) / (1 + gamma * i(k + 1))) + ...
                       (LAMBDA - mu * s(k) - (beta * s(k) * i(k)) / (1 + gamma * i(k))));
    di_corr = h / 2 * (((beta * s(k + 1) * i(k + 1)) / (1 + gamma * i(k + 1)) - (m * i(k + 1)) / (1 + n * i(k + 1)) - (mu + delta + rho) * i(k + 1)) + ...
                       ((beta * s(k) * i(k)) / (1 + gamma * i(k)) - (m * i(k)) / (1 + n * i(k)) - (mu + delta + rho) * i(k)));
    dr_corr = h / 2 * (((m * i(k + 1)) / (1 + n * i(k + 1)) + delta * i(k + 1) - mu * r(k + 1)) + ...
                       ((m * i(k)) / (1 + n * i(k)) + delta * i(k) - mu * r(k)));
    % Update corrected values
    s(k + 1) = s(k) + ds_corr;
    i(k + 1) = i(k) + di_corr;
    r(k + 1) = r(k) + dr_corr;
end

% Plot the results figure; plot(time, s, '-o', 'DisplayName', 's(t)'); hold on; plot(time, i, '-s', 'DisplayName', 'i(t)'); plot(time, r, '-d', 'DisplayName', 'r(t)'); xlabel('Time'); ylabel('Population'); title('Solution of the System of Fractional Differential Equations'); legend; grid on;

% Set plot range xlim([0 30]); ylim([0 100]);```

채택된 답변

Jacob Mathew
Jacob Mathew 2024년 8월 13일
Hey Naman,
I understand that you tried to plot a system of fractional order differential equations. To simplify solving and plotting fractional order differential equation, you can install and use the “FOTF Toolbox” Add On. You can find the Add On at the link below:
Refer to the following MATLAB Answer on how to install toolboxes:
We will specifically use the “fode_sol” function from the toolbox. Its implementation can be found here:
An example of using the function to plot a system of fractional order equations is as follows:
% Define the coefficients and orders for the first equation
a1 = [1, 0.5]; % Coefficients of the numerator for x(t)
na1 = [0.9, 0.9]; % Orders of the numerator (fractional order)
b1 = [1, -0.5]; % Coefficients of the denominator for x(t)
nb1 = [0, 0.9]; % Orders of the denominator (fractional order)
% Define the coefficients and orders for the second equation
a2 = [0.5, 1]; % Coefficients of the numerator for y(t)
na2 = [0.8, 0.8]; % Orders of the numerator (fractional order)
b2 = [1, -0.5]; % Coefficients of the denominator for y(t)
nb2 = [0, 0.8]; % Orders of the denominator (fractional order)
% Define the time vector
t = linspace(0, 10, 1000)';
% Define the input signals (e.g., step functions)
u1 = ones(size(t));
u2 = ones(size(t));
% Solve the fractional-order differential equations using fode_sol
x = fode_sol(a1, na1, b1, nb1, u1, t);
y = fode_sol(a2, na2, b2, nb2, u2, t);
% Plot the results
figure;
plot(t, x, 'r', 'DisplayName', 'x(t)');
hold on;
plot(t, y, 'b', 'DisplayName', 'y(t)');
xlabel('Time t');
ylabel('State variables');
legend;
title('Solution of System of Fractional-Order Differential Equations');
grid on;
Output of plotting the equations
Depending on your requirements, you can refer to other functions available in the FOTF Toolbox
  댓글 수: 1
Naman
Naman 2024년 8월 13일
@Jacob.—Thankyou for the response. I see these links, I will check and try them out. I had found fde12.m file in some other discussion, and that has helped me make some plots. Certainly, perhaps this toolbox might give better results if it uses other numerical techniques than what fde12.m does. I will try it out. Thankyou...

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Gamma Functions에 대해 자세히 알아보기

태그

제품


릴리스

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by