Fit data to lagged custom function

조회 수: 3 (최근 30일)
Paolo
Paolo 2024년 8월 1일
편집: Walter Roberson 2024년 8월 4일
Hello,
I would like to ask if you can advice the correct approach I can follow to estimate the parameters of a custom lagged function
(1) y(t)=c^2*a+y(t-1)*(a-1)
where c is a known constant.
to a time series data (I can use the symbilic function to create (1) )
Thank you.
Best regards
Paolo
  댓글 수: 2
Torsten
Torsten 2024년 8월 1일
편집: Torsten 2024년 8월 1일
I would like to ask if you can advice the correct approach I can follow to estimate the parameters of a custom lagged function
You mean the parameter "a" ?
Paolo
Paolo 2024년 8월 2일
Hi Torsten,
thank you for your feedback. Yes I mean "a"; I forgot to mention that the time series of Y is already available and I know Y(0)= 0.04356
Best regards
Paolo

댓글을 달려면 로그인하십시오.

채택된 답변

Harsh Kumar
Harsh Kumar 2024년 8월 2일
편집: Walter Roberson 2024년 8월 4일
Hope this may help ,
% Assuming you have your y data in a vector called 'y'
% and c is your known constant
% Step 1: Prepare data
y_lag = [NaN; y(1:end-1)]; % Create lagged y, with NaN for the first value
y = y(2:end); % Remove the first value of y to match dimensions
y_lag = y_lag(2:end);
% Step 2 & 3: Define the objective function
obj_fun = @(a) sum((y - (c^2*a + y_lag*(a-1))).^2);
% Step 4: Use optimization to find the best 'a'
options = optimset('Display', 'iter');
a_est = fminsearch(obj_fun, 0.5, options); % 0.5 is an initial guess for 'a'
% Print the result
fprintf('Estimated value of a: %f\n', a_est);
% Optional: Plot the results
y_pred = c^2*a_est + y_lag*(a_est-1);
plot(y, 'b-', 'DisplayName', 'Observed');
hold on;
plot(y_pred, 'r--', 'DisplayName', 'Predicted');
legend('show');
title('Observed vs Predicted y(t)');

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Interpolation에 대해 자세히 알아보기

제품


릴리스

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by