Can not know how to use minibatchqueue for a deep learning network that takes input as 4-D numbers and output 3 numbers through fully-connected layer.

조회 수: 3 (최근 30일)
There is a MATLAB example that uses minibatchqueue for input date as 4-D (image) and output as categorical. What I need is to update this example to accept output to be three numberical values (through a 3-fully connected layer).
The MATLAB example is:
[XTrain,YTrain] = digitTrain4DArrayData;
dsX = arrayDatastore(XTrain,IterationDimension=4);
dsY = arrayDatastore(YTrain);
dsTrain = combine(dsX,dsY);
classes = categories(YTrain);
numClasses = numel(classes);
net = dlnetwork;
layers = [
imageInputLayer([28 28 1],Mean=mean(XTrain,4))
convolution2dLayer(5,20)
reluLayer
convolution2dLayer(3,20,Padding=1)
reluLayer
convolution2dLayer(3,20,Padding=1)
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer];
net = addLayers(net,layers);
net = initialize(net);
miniBatchSize = 128;
mbq = minibatchqueue(dsTrain,...
MiniBatchSize=miniBatchSize,...
PartialMiniBatch="discard",...
MiniBatchFcn=@preprocessMiniBatch,...
MiniBatchFormat=["SSCB",""]);
function [X,Y] = preprocessMiniBatch(XCell,YCell)
% Extract image data from the cell array and concatenate over fourth
% dimension to add a third singleton dimension, as the channel
% dimension.
X = cat(4,XCell{:});
% Extract label data from cell and concatenate.
Y = cat(2,YCell{:});
% One-hot encode labels.
Y = onehotencode(Y,1);
end
Again, what I need is to know how to modify the code to accept three regression values at fully connected output layer.
Actually, I tried alot and alot without success. I think the main trick is the update that should be done inside this function: preprocessMiniBatch (defined above).
Thanks
  댓글 수: 5
Nader Rihan
Nader Rihan 2024년 7월 23일
편집: Nader Rihan 2024년 7월 23일
Hi Umar,
I have solved the issue. As I mentioned, the only issue with your solution is regressionLayer. If you remove it, all will be fine. I obtained this idea from this simulation:
where classification task is converted to regression one.
Have a nice day and thanks alot for your time.
Umar
Umar 2024년 7월 23일
I apologize Nader, attending meeting with software consultants for a large scale project. Glad to know your problem is resolved.

댓글을 달려면 로그인하십시오.

답변 (0개)

카테고리

Help CenterFile Exchange에서 Linear Regression에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by