Leave-out-one cross validation during neural network training

조회 수: 5 (최근 30일)
Isabelle Museck
Isabelle Museck 2024년 7월 17일
댓글: Umar 2024년 7월 19일
Hello there I am trying to train a ML model with leave-out-one trial cross validation. Right now I have input data stored in the 1x10 cell array: "XTrain" with each cell containing the prediction inputs for all 10 trials and another 1x10 cell array: "YTrain" that contains the correposding continous variable we are trying to predict/output.
net = connectLayers(net,outputName,"fc");
% Specify training options
options = trainingOptions('adam', ...
'MaxEpochs', 60, ...
'MiniBatchSize', 1, ...
'SequenceLength', 'longest', ...
'InputDataFormats', 'CTB', ...
'Plots', 'training-progress', ...
'Metrics', 'rmse', ...
'Verbose', 0 ...
'Validation);
% Train the network
net = trainnet(XTrain,YTrain,net,"mse",options)
I have built my model's network architecture stored in "net", but I am unsure of how to incorporte "leave out one trial" validation during training and then test my model's performance. I want the model to pull out one trial at a time and then train the model and continue to do this for all 10 trials so that I end up with one final network trained and validated on all the trials. But I also want to have data to test the model's performance? Do I need to create a loop for this? or is there a way I can specify this in the training options? Any help would be greatly appreciated!
  댓글 수: 9
Isabelle Museck
Isabelle Museck 2024년 7월 19일
Thank you so much! You are incredibly helpful!
Umar
Umar 2024년 7월 19일
No problem Isabelle, glad to help out.

댓글을 달려면 로그인하십시오.

답변 (0개)

카테고리

Help CenterFile Exchange에서 Sequence and Numeric Feature Data Workflows에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by