How to use fminunc for a 2D function composed of two functions?

조회 수: 3 (최근 30일)
Sergio
Sergio 2024년 6월 28일
편집: Sergio 2024년 6월 28일
I have:
and I want to minimize it on the unit square without using differentials.
I use the following code,
close all; clear; clc;
options = optimoptions(@fminunc,'Display','iter','Algorithm','quasi-newton');
xy_guess = [0,0];
[xy_opt,fval] = fminunc(@quadratic,xy_guess,options)
function f = quadratic(in)
x = in(1);
y = in(2);
f = -5.*x - 5.*y + 10.*x.^2 + 2.*x.*y
f = 1/200.*(-1000.*x - 1000.*y + 400.*x.*y + 1200.*y.^2 + 5.*cos(30.*x) + 4.*cos(80.*x.^2) + 5.*cos(30.*y) + 4.*cos(80.*y^2))
But declaring f twice does not work. How should I declare this double-function as an input for fminunc ?
Thanks!
  댓글 수: 2
Ashutosh Thakur
Ashutosh Thakur 2024년 6월 28일
Hi Sergio,
With the last line of code the value of f is overwritten, and only this value is passed to the fminunc. Also I have observed that you have a constraint on the unit square. You can take advantage of the fmincon function, https://www.mathworks.com/help/optim/ug/fmincon.html, as fminunc does not have any constraint.
Can you try to use fmincon function?
Sergio
Sergio 2024년 6월 28일
편집: Sergio 2024년 6월 28일
Thanks for the tip Ashutosh. While I will try fmincon, how do I represent f from that double map to a single input function?
With the new input, accordingly to your tip I get convergence, but I have no idea what f is considered as...
So I tried this (with the comma after + 2.*x.*y):
f = -5.*x - 5.*y + 10.*x.^2 + 2.*x.*y, 1/200.*(-1000.*x - 1000.*y + 400.*x.*y + 1200.*y.^2 + 5.*cos(30.*x) + 4.*cos(80.*x.^2) + 5.*cos(30.*y) + 4.*cos(80.*y^2))
options = optimoptions(@fmincon,'Display','iter','Algorithm','interior-point');
xy_guess = [0,0];
A = [0,1];
[xy_opt,fval] = fmincon(@quadratic,xy_guess,A,1)
function f = quadratic(in)
% Unpack inputs
x = in(1);
y = in(2);
% The Quadratic function in 2D
f = -5.*x - 5.*y + 10.*x.^2 + 2.*x.*y
f = 1/200.*(-1000.*x - 1000.*y + 400.*x.*y + 1200.*y.^2 + 5.*cos(30.*x) + 4.*cos(80.*x.^2) + 5.*cos(30.*y) + 4.*cos(80.*y^2))
end

댓글을 달려면 로그인하십시오.

채택된 답변

Aquatris
Aquatris 2024년 6월 28일
편집: Aquatris 2024년 6월 28일
You dont seem to have a double function.
So here is a code to solve your problem. You have local minimas so fmincon and brute force approach gives you different results, since brute force approach is a global optimization.
f = @(x) [x(1) x(2)]*[10 2;2 6]*[x(1);x(2)]-[5 5]*[x(1);x(2)]+(cos(30*x(1))+cos(30*x(2)))/40+(cos(80*x(1)^2)+cos(80*x(2)^2))/50;
options = optimoptions(@fmincon);
%options = optimoptions(@fmincon,'Display','iter','OptimalityTolerance',1e-12);
lb = [0 0];% lower bounds
ub = [1 1];% upper bounds
x0 = [.5 .5]; % initial guess
[xSol,fval,exitflag,output] = fmincon(f,x0,[],[],[],[],lb,ub,[],options); % solve optimization
Feasible point with lower objective function value found, but optimality criteria not satisfied. See output.bestfeasible.. Local minimum found that satisfies the constraints. Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.
% brute force searching the entire space for min function value
x1 = 0:0.001:1;
x2 = 0:0.001:1;
[X1,X2] = meshgrid(x1,x2);
fValBrute = arrayfun(@(x1,x2)f([x1 x2]),X1,X2);
idxMin = find(fValBrute == min(fValBrute,[],'all')); % find minimum function value
% plot
contourf(X1,X2,fValBrute,150)
hold on
plot(xSol(1),xSol(2),'k*') % black star is the result of fmincon
plot(X1(idxMin),X2(idxMin),'rx') % red x is the brute force result
title({sprintf('Min function value found via fmincon: %.4f at [%.4f %.4f]',fval,xSol(1),xSol(2));
sprintf('Min function value found via brute force: %.4f at [%.4f %.4f]',fValBrute(idxMin),X1(idxMin),X2(idxMin))})
hold off
  댓글 수: 1
Sergio
Sergio 2024년 6월 28일
편집: Sergio 2024년 6월 28일
Superb!! Thanks for this. I see the correct use with the semi-colonuse for the function representation, which is in fact a vector field rather than a function

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Language Fundamentals에 대해 자세히 알아보기

제품


릴리스

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by