Solving a constrained optimization problem
조회 수: 12 (최근 30일)
이전 댓글 표시
I am trying to solve an optimization problem in matlab:
minimize( sum_{i,j}(f(M(i,j))) + err )
subject to: - norm(M) < err
- err > 0
- if j == i+1: M(i,j) > 1
- if j == i-1: M(i,j) < -1
- else: -1 <= M(i,j) <= 1
where: - f is a non convex function in general
- M is an n by n matrix
Can anyone point me which function I should use?
댓글 수: 0
채택된 답변
Alan Weiss
2015년 4월 24일
If you look in the Optimization Decision Table you see that for a constrained nonlinear problem you should use fmincon. The constraint norm(M) < err is a nonlinear inequality constraint. The other constraints on M(i,j) are bound constraints.
Good luck,
Alan Weiss
MATLAB mathematical toolbox documentation
댓글 수: 3
Alan Weiss
2015년 4월 30일
That sounds right, with the proviso that you make
A = [M(:);err];
I mean, make a column vector, using a semicolon before err.
Alan Weiss
MATLAB mathematical toolbox documentation
추가 답변 (0개)
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!