How can I implement Dual LSTM in matlab?

조회 수: 7 (최근 30일)
Narayan
Narayan 2024년 6월 26일
댓글: Narayan 2024년 7월 3일
I want to implement dual LSTM network in matlab. How can i do it ? When I run this code, i get error as :
"Network: Invalid input layers. Network must have at most one sequence input layer".
How can i solve it? I would be grateful for your quick solution.
My objective is to train different types of features with seperate LSTM models and concatenate the outputs for fully connected layer to get single classification output.
Is it possible in matlab ?
inputSize1 = 4;
inputSize2 = 20;
numClasses = 5;
layers1 = [ ...
sequenceInputLayer(inputSize1, 'Name', 'input1')
lstmLayer(64, 'OutputMode', 'last', 'Name', 'lstm1')
dropoutLayer(0.2, 'Name', 'dropout1')
fullyConnectedLayer(64, 'Name', 'fc1')];
layers2 = [ ...
sequenceInputLayer(inputSize2, 'Name', 'input2')
lstmLayer(64, 'OutputMode', 'last', 'Name', 'lstm2')
dropoutLayer(0.2, 'Name', 'dropout2')
fullyConnectedLayer(64, 'Name', 'fc2')];
combinedLayers = [ ...
concatenationLayer(1, 2, 'Name', 'concat')
fullyConnectedLayer(64, 'Name', 'fc_combined')
reluLayer('Name', 'relu')
fullyConnectedLayer(numClasses, 'Name', 'fc_final')
softmaxLayer('Name', 'softmax')
classificationLayer('Name', 'classification')];
lgraph = layerGraph();
lgraph = addLayers(lgraph, layers1);
lgraph = addLayers(lgraph, layers2);
lgraph = addLayers(lgraph, combinedLayers);
lgraph = connectLayers(lgraph, 'fc1', 'concat/in1');
lgraph = connectLayers(lgraph, 'fc2', 'concat/in2');
plot(lgraph);
options = trainingOptions('adam', ...
'InitialLearnRate', 0.001, ...
'MaxEpochs', 10, ...
'MiniBatchSize', 32, ...
'Shuffle', 'once', ...
'Plots', 'training-progress', ...
'Verbose', false);
net = trainNetwork(Normalized_data, y_train, lgraph, options);

답변 (1개)

Shivansh
Shivansh 2024년 6월 29일
Hi Narayan,
It seems like you want to train sepeerate LSTM models in MATLAB.
The "trainNetwork" function doesn't support multiple sequence input layers directly.
I will recommend creating two seperate LSTM networks for different features, combining their outputs and using a custom training loop instead of the "trainNetwork" function to train the network.
I can see in your code that you are aware of the methods to achieve the first two steps. Please refer to the following MATLAB documentation for more information about the "custom training loop".
I hope this resolves your issue!
  댓글 수: 1
Narayan
Narayan 2024년 7월 3일
Thank you for your suggestions. Would you please provide me idea/document about the custom training with validation data. I could not found any proper document about dual input LSTM and custom trianing in Matlab. It seems easier in Pytorch to do it due to proper documentation. So. I ask your help for custom training for LSTM in matlab. Thank you

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Build Deep Neural Networks에 대해 자세히 알아보기

제품


릴리스

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by