Fitting multiple curves with multiple data sets, partial and globally shared parameters using lsqcurvefit

조회 수: 27 (최근 30일)
Hello everyone, I hope you can help me with the following problem. I have 3 measurement data sets, consisting of x-values (e.g. x1) and 2 corresponding y-data sets (e.g. A1 and B1). The functions of these parameters have partially shared parameters. A simultaneous fit over both curves works so far. Now I want to run a global fit over all 3 measurement datasets simultaneously, where all 3 measurement datasets share one parameter (beta(10)). How do I do this? Previously, I received a value for beta (10) for each fit, but now I want to change this. My data and functions (non-linear) are very extensive, so I have created a simplified example.
b1 = 1; b2 = 0.85; b3 = 2.5;
b4 = 1.1; b5 = 2.2; b6 = 4.5;
b7 = 1.3; b8 = 7.2; b9 = 9.5;
b10 = 0.5;
%x data
x1 = linspace(0, 10, 20).'; x2 = linspace(0, 10, 23).'; x3 = linspace(0, 10, 14).';
%constants
C1 = 3.7 ; C2 = 4.2; C3 = 20.2;
%measurement dataset 1
A1 = b1 + b2*x1 + C1 * b10 + rand(20,1);
B1 = b3 - b2*x1 + C1 * b10 + rand(20,1);
%measurement dataset 2
A2 = b4 + b5*x2 + C2 * b10 + rand(23,1);
B2 = b6 - b5*x2 + C2 * b10 + rand(23,1);
%measurement dataset 3
A3 = b7 + b8*x3 + C3 * b10 + rand(14,1);
B3 = b9 - b8*x3 + C3 * b10 + rand(14,1);
mdl1 = @(beta, x) [beta(1) + beta(2).*x + C1 .* beta(10) ,...
beta(3) - beta(2).*x + C1 .* beta(10)];
mdl2 = @(beta, x) [beta(4) + beta(5).*x + C2 .* beta(10) ,...
beta(6) - beta(5).*x + C2 .* beta(10)];
mdl3 = @(beta, x) [beta(7) + beta(8).*x + C3 .* beta(10) ,...
beta(9) - beta(8).*x + C3 .* beta(10)];
beta0 = [0.92, 0.8, 2, 0.7, 2, 4, 1, 7, 9, 1];
lb = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
ub = [15, 15, 15, 15, 15, 15, 15, 15, 15, 15];
options = optimoptions(@lsqcurvefit,'Algorithm','levenberg-marquardt');
beta1 = lsqcurvefit(mdl1,beta0,x1,[A1, B1],lb,ub,options);
beta2 = lsqcurvefit(mdl2,beta0,x2,[A2, B2],lb,ub,options);
beta3 = lsqcurvefit(mdl3,beta0,x3,[A3, B3],lb,ub,options);
A1_fit = beta1(1) + beta1(2)*x1 + C1 * beta1(10);
B1_fit = beta1(3) - beta1(2)*x1 + C1 * beta1(10);
A2_fit = beta2(4) + beta2(5)*x2 + C2 * beta2(10);
B2_fit = beta2(6) - beta2(5)*x2 + C2 * beta2(10);
A3_fit = beta3(7) + beta3(8)*x3 + C3 * beta3(10);
B3_fit = beta3(9) - beta3(8)*x3 + C3 * beta3(10);
figure(1);
subplot(2,1,1);
hold on;
plot(x1, A1,'s');
plot(x1, A1_fit);
plot(x2, A2,'d');
plot(x2, A2_fit);
plot(x3, A3,'p');
plot(x3, A3_fit);
subplot(2,1,2);
hold on;
plot(x1, B1,'s');
plot(x1, B1_fit);
plot(x2, B2,'d');
plot(x2, B2_fit);
plot(x3, B3,'p');
plot(x3, B3_fit);
hold off

채택된 답변

Torsten
Torsten 2024년 6월 16일
편집: Torsten 2024년 6월 16일
rng("default")
b1 = 1; b2 = 0.85; b3 = 2.5;
b4 = 1.1; b5 = 2.2; b6 = 4.5;
b7 = 1.3; b8 = 7.2; b9 = 9.5;
b10 = 0.5;
%x data
x1 = linspace(0, 10, 20).'; x2 = linspace(0, 10, 23).'; x3 = linspace(0, 10, 14).';
%constants
C1 = 3.7 ; C2 = 4.2; C3 = 20.2;
%measurement dataset 1
A1 = b1 + b2*x1 + C1 * b10 + rand(20,1);
B1 = b3 - b2*x1 + C1 * b10 + rand(20,1);
%measurement dataset 2
A2 = b4 + b5*x2 + C2 * b10 + rand(23,1);
B2 = b6 - b5*x2 + C2 * b10 + rand(23,1);
%measurement dataset 3
A3 = b7 + b8*x3 + C3 * b10 + rand(14,1);
B3 = b9 - b8*x3 + C3 * b10 + rand(14,1);
beta0 = [0.92, 0.8, 2, 0.7, 2, 4, 1, 7, 9, 1];
lb = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
ub = [15, 15, 15, 15, 15, 15, 15, 15, 15, 15];
fun = @(beta,x)[beta(1) + beta(2).*x1 + C1* beta(10) ;
beta(3) - beta(2).*x1 + C1* beta(10) ;
beta(4) + beta(5).*x2 + C2* beta(10) ;
beta(6) - beta(5).*x2 + C2* beta(10) ;
beta(7) + beta(8).*x3 + C3* beta(10) ;
beta(9) - beta(8).*x3 + C3* beta(10) ];
beta = lsqcurvefit(fun,beta0,[x1;x1;x2;x2;x3;x3],[A1;B1;A2;B2;A3;B3],lb,ub)
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
beta = 1x10
1.2801 0.8703 2.8336 1.3172 2.1985 4.7244 0.4327 7.1798 8.4477 0.5704
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
A1_fit = beta(1) + beta(2)*x1 + C1 * beta(10);
B1_fit = beta(3) - beta(2)*x1 + C1 * beta(10);
A2_fit = beta(4) + beta(5)*x2 + C2 * beta(10);
B2_fit = beta(6) - beta(5)*x2 + C2 * beta(10);
A3_fit = beta(7) + beta(8)*x3 + C3 * beta(10);
B3_fit = beta(9) - beta(8)*x3 + C3 * beta(10);
figure(1);
subplot(2,1,1);
hold on;
plot(x1, A1,'s');
plot(x1, A1_fit);
plot(x2, A2,'d');
plot(x2, A2_fit);
plot(x3, A3,'p');
plot(x3, A3_fit);
subplot(2,1,2);
hold on;
plot(x1, B1,'s');
plot(x1, B1_fit);
plot(x2, B2,'d');
plot(x2, B2_fit);
plot(x3, B3,'p');
plot(x3, B3_fit);
hold off
  댓글 수: 1
WR
WR 2024년 6월 16일
I have applied your suggestion to my non-linear problem and it works. Thank you very much. I tip my cap to you.

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Mathematics에 대해 자세히 알아보기

제품


릴리스

R2016b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by