dear community,
i have the following problem: I want to test differences of specific repeated measures during a pre and a post test:
my datasets has 10 subjects, each subjects did 2 tasks (called pre and post). during each task, I did repeated measurements of 5 different parameters (each set of 5 parameters were taken at the same time) over time. In addition, each pre and post measurement can be divided into two segments A and B. Now, i want to analyze the differences between pre and post on four different levels: on each of the parameters
taking parameter, I want to compare
- subject wise and segement wise, e.g. Subj1, pre, A to Subj1, post, A
- subjects wise only, both segments together, e.g. Subj1, pre, A+B to Subj1, post, A+B
- segment-wise, but all subjects, e.g. Subj1to10, pre, A to Subj1to10, post, B
- all subjects, both segements: Subj1to10, pre, A+B to Subj1to10, post, A+B
note that segments A/B and pre and post measurements do not have equal sample size, the samples are not independent and they may not be normally distributed.
How to tell, if there is a statistical significant difference between pre and post test at each of the four levels, and a suitable post-hoc analysis to tell, how this difference might be directed (probably looking at the median?)
And of course i need to compensate for mutiple comparison due to the 4 levels and the 5 parameters is measured at the same time?
best regards
Jonas