How can I fix my Runge Kutta (4th order) method to solve a 2nd order ODE?

조회 수: 2 (최근 30일)
Mert
Mert 2024년 5월 20일
답변: Nipun 2024년 6월 3일
solve x''(t) +δx'(t) + αx(t) + βx(t)^3 = γcos(ωt), x(0)=0 , x'(0)=0
clc
clear;
h=1;
delta = 0.1;
alpha = -1;
beta = 0.25;
gamma = 2.5;
omega = 2;
t(1)=0;
z(1)=0;
x(1)=0;
d=(gamma*(cos(omega*t)))-(beta*(x^3))-(alpha*x)-(delta*z)
d = 2.5000
g=@(t,x,z) z;
f=@(t,x,z) (gamma*(cos(omega*t)))-(beta*(x^3))-(alpha*x)-(delta*z);
for i=1:50
L1 = h*g(t, x, z);
k1 = h*f(t, x, z);
L2 = h*g(t+h/2, x+k1/2, z+L1/2);
k2 = h*f(t+h/2, x+k1/2, z+L1/2);
L3 = h*g(t+h/2, x+k2/2, z+L2/2);
k3 = h*f(t+h/2, x+k2/2, z+L2/2);
L4 = h*g(t+h, x+k3, z+L3);
k4 = h*f(t+h, x+k3, z+L3);
z = z + (L1+2*L2+2*L3+L4)/6;
x = x + (L1+2*L2+2*L3+L4)/6;
t= t+h;
fprintf('i=%8.0f, t=%8.2f, x=%8.6f, z=%8.6f\n',i,t,x,z)
plot(t,z,'-*r')
hold on
plot(t,x,'-ob')
end
i= 1, t= 1.00, x=0.000000, z=0.000000 i= 2, t= 2.00, x=0.000000, z=0.000000 i= 3, t= 3.00, x=0.000000, z=0.000000 i= 4, t= 4.00, x=0.000000, z=0.000000 i= 5, t= 5.00, x=0.000000, z=0.000000 i= 6, t= 6.00, x=0.000000, z=0.000000 i= 7, t= 7.00, x=0.000000, z=0.000000 i= 8, t= 8.00, x=0.000000, z=0.000000 i= 9, t= 9.00, x=0.000000, z=0.000000 i= 10, t= 10.00, x=0.000000, z=0.000000 i= 11, t= 11.00, x=0.000000, z=0.000000 i= 12, t= 12.00, x=0.000000, z=0.000000 i= 13, t= 13.00, x=0.000000, z=0.000000 i= 14, t= 14.00, x=0.000000, z=0.000000 i= 15, t= 15.00, x=0.000000, z=0.000000 i= 16, t= 16.00, x=0.000000, z=0.000000 i= 17, t= 17.00, x=0.000000, z=0.000000 i= 18, t= 18.00, x=0.000000, z=0.000000 i= 19, t= 19.00, x=0.000000, z=0.000000 i= 20, t= 20.00, x=0.000000, z=0.000000 i= 21, t= 21.00, x=0.000000, z=0.000000 i= 22, t= 22.00, x=0.000000, z=0.000000 i= 23, t= 23.00, x=0.000000, z=0.000000 i= 24, t= 24.00, x=0.000000, z=0.000000 i= 25, t= 25.00, x=0.000000, z=0.000000 i= 26, t= 26.00, x=0.000000, z=0.000000 i= 27, t= 27.00, x=0.000000, z=0.000000 i= 28, t= 28.00, x=0.000000, z=0.000000 i= 29, t= 29.00, x=0.000000, z=0.000000 i= 30, t= 30.00, x=0.000000, z=0.000000 i= 31, t= 31.00, x=0.000000, z=0.000000 i= 32, t= 32.00, x=0.000000, z=0.000000 i= 33, t= 33.00, x=0.000000, z=0.000000 i= 34, t= 34.00, x=0.000000, z=0.000000 i= 35, t= 35.00, x=0.000000, z=0.000000 i= 36, t= 36.00, x=0.000000, z=0.000000 i= 37, t= 37.00, x=0.000000, z=0.000000 i= 38, t= 38.00, x=0.000000, z=0.000000 i= 39, t= 39.00, x=0.000000, z=0.000000 i= 40, t= 40.00, x=0.000000, z=0.000000 i= 41, t= 41.00, x=0.000000, z=0.000000 i= 42, t= 42.00, x=0.000000, z=0.000000 i= 43, t= 43.00, x=0.000000, z=0.000000 i= 44, t= 44.00, x=0.000000, z=0.000000 i= 45, t= 45.00, x=0.000000, z=0.000000 i= 46, t= 46.00, x=0.000000, z=0.000000 i= 47, t= 47.00, x=0.000000, z=0.000000 i= 48, t= 48.00, x=0.000000, z=0.000000 i= 49, t= 49.00, x=0.000000, z=0.000000 i= 50, t= 50.00, x=0.000000, z=0.000000
  댓글 수: 2
Torsten
Torsten 2024년 5월 20일
For comparison:
h=0.01;
delta = 0.1;
alpha = -1;
beta = 0.25;
gamma = 2.5;
omega = 2;
fun = @(t,y)[y(2);-delta*y(2)-alpha*y(1)-beta*y(1)^3+gamma*cos(omega*t)];
tspan = 0:h:5000*h;
y0 = [0;0];
[T,Y] = ode45(fun,tspan,y0);
plot(T,Y)
Sam Chak
Sam Chak 2024년 5월 20일
Could you please clarify how you would like the for-loop to function? Specifically, where would you like the iteration variable 'i' to be inserted?
for i=1:50
L1 = h*g(t, x, z);
k1 = h*f(t, x, z);
L2 = h*g(t+h/2, x+k1/2, z+L1/2);
k2 = h*f(t+h/2, x+k1/2, z+L1/2);
L3 = h*g(t+h/2, x+k2/2, z+L2/2);
k3 = h*f(t+h/2, x+k2/2, z+L2/2);
L4 = h*g(t+h, x+k3, z+L3);
k4 = h*f(t+h, x+k3, z+L3);
z = z + (L1+2*L2+2*L3+L4)/6;
x = x + (L1+2*L2+2*L3+L4)/6;
t= t+h;
fprintf('i=%8.0f, t=%8.2f, x=%8.6f, z=%8.6f\n',i,t,x,z)

댓글을 달려면 로그인하십시오.

답변 (1개)

Nipun
Nipun 2024년 6월 3일
Hi Mert,
I understand that you want to solve the differential equation "x''(t) + δx'(t) + αx(t) + βx(t)^3 = γcos(ωt)" with initial conditions "x(0) = 0" and "x'(0) = 0".
Here are some assumptions and corrections for your MATLAB code:
  1. I assume that you are using the Runge-Kutta method for solving the differential equation.
  2. The differential equations are coupled: "x'(t) = z(t)" and "z'(t) = γcos(ωt) - βx(t)^3 - αx(t) - δz(t)".
  3. The code needs to correctly update the time "t", the state variables "x" and "z", and use arrays to store the results for plotting.
Here's a corrected and complete version of your MATLAB code:
clc;
clear;
% Parameters
h = 1;
delta = 0.1;
alpha = -1;
beta = 0.25;
gamma = 2.5;
omega = 2;
% Initial conditions
t(1) = 0;
z(1) = 0;
x(1) = 0;
% Define the functions for the differential equations
g = @(t, x, z) z;
f = @(t, x, z) (gamma * cos(omega * t)) - (beta * x^3) - (alpha * x) - (delta * z);
% Time-stepping using the 4th-order Runge-Kutta method
for i = 1:50
L1 = h * g(t(i), x(i), z(i));
k1 = h * f(t(i), x(i), z(i));
L2 = h * g(t(i) + h/2, x(i) + L1/2, z(i) + k1/2);
k2 = h * f(t(i) + h/2, x(i) + L1/2, z(i) + k1/2);
L3 = h * g(t(i) + h/2, x(i) + L2/2, z(i) + k2/2);
k3 = h * f(t(i) + h/2, x(i) + L2/2, z(i) + k2/2);
L4 = h * g(t(i) + h, x(i) + L3, z(i) + k3);
k4 = h * f(t(i) + h, x(i) + L3, z(i) + k3);
x(i+1) = x(i) + (L1 + 2*L2 + 2*L3 + L4) / 6;
z(i+1) = z(i) + (k1 + 2*k2 + 2*k3 + k4) / 6;
t(i+1) = t(i) + h;
end
% Plotting the results
figure;
plot(t, x, '-ob', 'DisplayName', 'x(t)');
hold on;
plot(t, z, '-*r', 'DisplayName', 'z(t)');
xlabel('Time t');
ylabel('State variables');
legend;
title('Solution of the Differential Equation');
grid on;
This code correctly implements the Runge-Kutta method for the given differential equations and plots the results. The "x" and "z" arrays store the state variables, and the "t" array stores the time steps.
Hope this helps.
Regards,
Nipun

카테고리

Help CenterFile Exchange에서 Programming에 대해 자세히 알아보기

제품


릴리스

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by