- Define your model function directly in the code.
- Use "fitnlm" with your data, model function, and initial parameter guesses to fit the non-linear model.
- Extract coefficient estimates and their p-values from the fitted model object for analysis.
- Use MATLAB's plotting functions to visualize the fit and residuals as needed.
how to get p-values from fit function
조회 수: 55 (최근 30일)
이전 댓글 표시
Hello, i'm trying to get p-value from a fitting performed with fit function, but i cannot find how to do so, i can only get r2 and RMSE.
Should i use some other function rather than fit?
here my code and the data, hope it will be understandable. thanks you very much in advance.
ft = fittype('(m*c*k*x)/((1-k*x)*(1+(c-1)*k*x))', ...
'dependent',{'y'}, ...
'independent',{'x'}, ...
'coefficients',{'m','c','k'});
coef = ["Xm","Cg","K","R2","RMSE"];
figure (1);
[f,gof] = fit(x,y, ft,'StartPoint',[0.2, 5, 1]);
plot(f);
hold on
plot(x,y);
figure(2);
plot(f,x,y,"residuals");
%save coefficients
format long g
c = coeffvalues(f);
R2 = gof.rsquare;
RMSE = gof.rmse;
r = horzcat(c,R2,RMSE);
coef = [coef;r];
댓글 수: 0
채택된 답변
Pratyush
2024년 5월 15일
Hi federico,
To obtain p-values for the coefficients from a fitting process in MATLAB, you should use the "fitnlm" function from the Statistics and Machine Learning Toolbox instead of the "fit" function from the Curve Fitting Toolbox. The "fitnlm" function fits non-linear models and provides detailed statistical analysis, including p-values for the model coefficients, which help assess their statistical significance. Here's a brief guide on how to adjust your code:
Hope this helps.
댓글 수: 3
Voss
2024년 5월 23일
Use array operators ./ and .* to handle array x properly:
model = @(b,x) (b(1)*b(2)*b(3)*x)./((1-b(3)*x).*(1+(b(2)-1)*b(3)*x))
% ^^ ^^
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Linear and Nonlinear Regression에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!