Help, I need to know how to build a dataset. I have 7 txt file of bearing raw vibration generated. If can I need step by step. Already three days search.

조회 수: 2 (최근 30일)
Here attached with all raw vibration data mentioned above.
  댓글 수: 2
William Rose
William Rose 2024년 5월 8일
I looked at the contents of the seven files you uploaded. Each file has two columns of numbers, and no labels. Column 1 appears to be time. The sampling rate is 1000 Hz for all seven files. The duration is 1 second for 4 files, and 10 seconds for 3 files. I assume column 2 is a measure of vibration, such as force or displacement or acceleration.
The file names indicate the seven recordings are made under seven distinct conditions. Please explain how you plan to analyze the seven recordings, and what information you plan to obtain from the database. I am asking because the structure of the database should be related to the intended use of the database.
What do you want to do with this data?
Rusyaidi Yusri
Rusyaidi Yusri 2024년 5월 11일
이동: Voss 2024년 5월 11일
Hi, I need to make it as trained dataset for supervised model. But I lack of knowldge, how to do that.

댓글을 달려면 로그인하십시오.

채택된 답변

Tejas
Tejas 2024년 5월 23일
Hi Rusyaidi,
In supervised learning, models require the provision of expected values or classes alongside the data entries they will predict on. Therefore, one way to create a training dataset from the provided text files is to assign all entries within a text file to a specific class. Here is a step-by-step procedure to accomplish this:
  • Begin by loading the contents of the text files
data = cell(7, 1);
fileNames = {'bearing_defect_ball.txt', 'bearing_defect_on_Retainer.txt'...
'bearing_defect_Outer_Race_vibration.txt','bearing_vibration_defect_on_seal.txt',...
'bearing_vibration_defect_on_shield.txt', 'defective_Inner_Race_vibration.txt',...
'Normal_bearing_condition_raw_data.txt'};
for i = 1:6
data{i} = readtable(fileNames{i}, 'Format', '%f%f', 'ReadVariableNames', false);
end
data{7} = readtable(fileNames{7}, 'HeaderLines', 1);
  • Next, add an extra column to dataset. This column should indicate the class to which each entry belongs.
class = {'class_1','class_2','class_3','class_4','class_5', 'class_6','class_7'};
for i = 1:7
data{i}.Condition = repmat(class(i), height(data{i}), 1);
end
dataSet = vertcat(data{:});
cv = cvpartition(height(dataSet), 'HoldOut', 0.3);
trainData = dataSet(training(cv), :);
testData = dataSet(test(cv), :);
model = fitctree(trainData(:, {'Var1', 'Var2'}), trainData.Condition);
This method represents one of several approaches to constructing a training dataset for supervised models. The final structure of the training dataset will be determined by the intended use of the data contained in the text files.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Text Analytics Toolbox에 대해 자세히 알아보기

태그

제품

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by