Observations being read as number of columns instead of rows
조회 수: 4 (최근 30일)
이전 댓글 표시
Before splitting my data into training, validation, and testing, the code worked fine. After the split, trainnet begins reading the observations as the number of columns instead of by the number of rows. I checked the size of the array files and they are the same size the arrays were before I added a data split. I do not understand why trainnet starts reading the arrays differently. Any help would be appreciated.
Error message:
Error using trainnet
Error forming validation data mini-batch.
Error in MainCode6 (line 40)
netTrained = trainnet(stan_x_train, stan_y_train, net, "mse", opts);
Caused by:
Number of observations in predictors (6) and targets (1) must match. Check that the data and network are
consistent.
% Script Number One
all = readtable(excelFile,"Sheet","Nsplit6",'VariableNamingRule','preserve');
train_ratio = 0.8;
val_ratio = 0.1;
test_ratio = 0.1;
num_samples = size(all, 1);
indices = randperm(num_samples);
num_train = floor(train_ratio * num_samples);
num_val = floor(val_ratio * num_samples);
num_test = num_samples - num_train - num_val;
train_indices = indices(1:num_train);
val_indices = indices(num_train+1:num_train+num_val);
test_indices = indices(num_train+num_val+1:end);
train_data = all(train_indices, :);
val_data = all(val_indices, :);
test_data = all(test_indices, :);
X_train = train_data(:, 1:end-1);
Y_train = train_data(:, end);
X_val = val_data(:, 1:end-1);
Y_val = val_data(:, end);
X_test = test_data(:, 1:end-1);
Y_test = test_data(:, end);
stan_x_train = table2array(X_train);
stan_y_train = table2array(Y_train);
stan_x_val = table2array(X_val);
stan_y_val = table2array(Y_val);
stan_x_test = table2array(X_test);
stan_y_test = table2array(Y_test);
%Script number two
inputSize = 6;
hiddenLayerSize1 = 40;
hiddenLayerSize2 = 20;
hiddenLayerSize3 = 10;
outputSize = 1;
layers = [
featureInputLayer(inputSize)
fullyConnectedLayer(hiddenLayerSize1, 'Name', 'fc1')
reluLayer('Name', 'relu1')
fullyConnectedLayer(hiddenLayerSize2, 'Name', 'fc2')
reluLayer('Name', 'relu2')
fullyConnectedLayer(hiddenLayerSize3, 'Name', 'fc3')
reluLayer('Name', 'relu3')
fullyConnectedLayer(outputSize, 'Name', 'output')
];
net = dlnetwork(layers);
opts = trainingOptions('adam', ...
'InitialLearnRate', 0.01, ...
'MaxEpochs', 200, ...
'MiniBatchSize', 20, ...
'ValidationData', {stan_x_val', stan_y_val'}, ...
'ValidationFrequency', 20, ...
'Verbose', true ...
);
netTrained = trainnet(stan_x_train, stan_y_train, net, "mse", opts);
댓글 수: 0
채택된 답변
Stephen23
2024년 5월 5일
이동: Matt J
2024년 5월 7일
Perhaps because the data are (complex conjugate) transposed here:
'ValidationData', {stan_x_val', stan_y_val'},
Note that you can very easily simplify your code by using curly braces to access the table content:, e.g. replace:
X_train = train_data(:, 1:end-1);
..
stan_x_train = table2array(X_train);
with
stan_x_train = train_data{:,1:end-1};
% ^ ^ curly-braces = table content
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!