5G handover mechanism
    조회 수: 35 (최근 30일)
  
       이전 댓글 표시
    
I’m currently embarking on a project to simulate the 5G handover mechanism and I'm looking for the best ways to utilize a 5G toolkit for this purpose.
Could anyone recommend specific tutorials, resources, or starting points that would help me understand and effectively simulate the 5G handover processes? I am particularly interested in practical examples or detailed guides that can provide a step-by-step approach to using 5G toolkits for simulating various scenarios involved in network handovers.
댓글 수: 0
답변 (1개)
  Maneet Kaur Bagga
      
 2024년 5월 6일
        Hi,
As per my understanding, you are looking for a workaround to simulate the "handover process", 
Following the MathWorks Documentation till the latest release of R2024a, it suggests that the "handover" functionality is currently unavailable in the "5G Toolbox", therefore no direct function is available that takes the UE object and the target gNB as input and perform the handover directly.
Please refer to the following code snippet as reference as an alternate workaround:
classdef MyHandoverEnvironment < rl.env.MATLABEnvironment
    properties
        NumBS 
        NumUE 
        SimDuration 
        SimArea 
        SignalRange
        MinBSDistance 
        MaxUEVelocity 
        RSRPThreshold 
        UEPositions 
        UEVelocities 
        BSPositions 
        UEBSConnections 
        timestep 
        handoverCount
        previousHandoverCount
    end
    methods
        function this = MyHandoverEnvironment(numBS, numUE, simDuration, simArea, signalRange, minBSDistance, MaxUEVelocity, rsrpThreshold)
            % Define the observation space
            observationSpace = rlNumericSpec([numUE*2 1]); % Considering UE Positions and Velocities
            observationSpace.Name = 'Observation';
            disp(observationSpace);
            % Define the action space
            actionDimension = numUE; % Assuming actionDimension = number of UEs.
            actionSpace = rlFiniteSetSpec(arrayfun(@(x) 0:1, 1:actionDimension, 'UniformOutput', false));
            actionSpace.Name = 'Action';
            disp(actionSpace);
            % Call the superclass constructor
            this = this@rl.env.MATLABEnvironment(observationSpace, actionSpace);
            % Initialize your class properties
            this.NumBS = numBS;
            this.NumUE = numUE;
            this.SimDuration = simDuration;
            this.SimArea = simArea;
            this.SignalRange = signalRange;
            this.MinBSDistance = minBSDistance;
            this.MaxUEVelocity = MaxUEVelocity;
            this.RSRPThreshold = rsrpThreshold;
            % Initialize environment state
            this.reset();
        end
        function observation = reset(this)
            this.UEPositions = this.SimArea * rand(this.NumUE, 2);
            this.UEVelocities = this.MaxUEVelocity * rand(this.NumUE, 1);
            this.BSPositions = this.deployBS(this.NumBS, this.SimArea, this.MinBSDistance);
            this.UEBSConnections = zeros(this.NumUE, this.SimDuration);
            this.timestep = 1;
            this.handoverCount = 0;
            % Return the initial observation
            observation = 0;
        end
        function [observation, reward, isDone] = step(this, action)
            disp('Step function called');
            isDone = false;
            this.UEPositions = this.updateUEPositions(this.UEPositions, this.UEVelocities);
            this.UEPositions = this.limitUEPositions(this.UEPositions, this.SimArea);
            for i = 1:this.NumUE
                if action(i) == 0
                    % Keep the current connection
                    reward = reward + 1;
                else
                    distances = sqrt(sum((this.BSPositions - this.UEPositions(i, :)).^2, 2));
                    [~, minIndex] = min(distances);
                    disp(minIndex);
                    if this.timestep > 1 && this.UEBSConnections(i, this.timestep-1) ~= minIndex
                        this.UEBSConnections(i, this.timestep) = minIndex;
                        reward = reward - 1; % Penalty for handover
                    end
                end
            end
            this.timestep = this.timestep + 1;
            observation = getObservation();
            if this.timestep > this.SimDuration
                isDone = true;
            end
        end
        function observation = getObservation(this)
            observation = [this.UEPositions(:)];
        end
        function bsPositions = deployBS(this, numBS, simArea, minBSDistance)
            bsPositions = zeros(numBS, 2);
            for i = 1:numBS
                validPosition = false;
                while ~validPosition
                    bsPositions(i, :) = simArea * rand(1, 2);
                    if i > 1
                        distances = sqrt(sum((bsPositions(1:i-1, :) - bsPositions(i, :)).^2, 2));
                        if all(distances >= minBSDistance)
                            validPosition = true;
                        end
                    else
                        validPosition = true;
                    end
                end
            end
        end
        function uePositions = updateUEPositions(this, uePositions, ueVelocities)
            timeStep = 0.1;
            numUE = size(uePositions, 1);
            uePositions = uePositions + (timeStep * ueVelocities) .* (0.1 * randn(numUE, 2));
        end
        function uePositions = limitUEPositions(this, uePositions, simArea)
            uePositions(uePositions < 0) = 0;
            uePositions(uePositions > simArea) = simArea;
        end
    end
end
For a similar workaround to achieve the 5G Handover is using the "Reinforcement Learning". Please refer to the MATLAB Answer below in reference to your question.
Hope this helps!
댓글 수: 0
참고 항목
카테고리
				Help Center 및 File Exchange에서 Introduction to Installation and Licensing에 대해 자세히 알아보기
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

