GIBBS SAMPLING FOR N DISCRETE VARIABLES IN A N-SPACE

조회 수: 6 (최근 30일)
Sergio RUGGIERI
Sergio RUGGIERI 2024년 5월 2일
댓글: Sergio RUGGIERI 2024년 5월 16일
Dear all,
I would like to ask how can be perfomed a Gibbs sampling for a space constituted by n discrete distributions. As an example, I provide 5 distributions with different data, different size, and different p(data), which represent the posterior probability:
- data1 = [50 70 100 130 170 230 300 400]; p(data1) = [0.20 0.05 0.05 0.10 0.09 0.01 0.28 0.22];
- data2 = [1 2 3 4 5 6 7 8]; p(data2) = [0.05 0.1 0.25 0.1 0.05 0.05 0.2 0.2];
- data3 = [1 2 3 4]; p(data3) = [0.3 0.5 0.1 0.1];
- data4 = [1 2]; p(data4) = [0.85 0.15];
- data5 = [1 2]; p(data5) = [0.9 0.1];
  댓글 수: 3
Sergio RUGGIERI
Sergio RUGGIERI 2024년 5월 3일
Dear Star Strider, thanks for your answer.
Unfortunately, I did not find any example about this sampling technique with discrete distributions, and even less if in the space I consider also continous distributions.
Star Strider
Star Strider 2024년 5월 3일
My pleasure. I did an Interweb search, and unfortunately found nothing with respect to your question, although you may be able to find something since you know what you’re looking for. What I posted was as close as I can get. You may have to write your own code for this project.

댓글을 달려면 로그인하십시오.

답변 (1개)

Vinayak
Vinayak 2024년 5월 16일
Hi Sergio,
It seems like you want to distribute 'x' data points according to their probabilities into 10,000 samples. This process should be repeated for all 'n' distributions, generating a sample object where each object includes all 'n' data points.
You may use the randsample” function, which takes data, sample size, and probability as inputs to output the sample dataset with the probabilities provided. This function can be used for all independent 'n' distributions separately.
For the example data you provided, the following code should work:
% Your declaration of data as matrices.
samples = zeros(10000, 5);
for i = 1:10000
samples(i, 1) = randsample(data1, 1, true, pdata1);
samples(i, 2) = randsample(data2, 1, true, pdata2);
samples(i, 3) = randsample(data3, 1, true, pdata3);
samples(i, 4) = randsample(data4, 1, true, pdata4);
samples(i, 5) = randsample(data5, 1, true, pdata5);
end
If you want to learn more about the "randsample" function, refer to this documentation link - https://www.mathworks.com/help/stats/randsample.html
I hope this helps!
  댓글 수: 1
Sergio RUGGIERI
Sergio RUGGIERI 2024년 5월 16일
Dear Vinayak,
thanks for your answer. This is the unique way I found to have numerically correct results, but I did not take it into account because in this way, the information about the space (i.e., the Joint PMF) should be lost.

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Descriptive Statistics and Visualization에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by