How to connect a 1d convolution layer after a LSTM layer with output mode "last"?

조회 수: 4 (최근 30일)
I am working on classify sEMG data, and I want to build a LSTM-CNN network. I want to first employ a LSTM layer and take the last output as the input of a 1D convolution layer.
layers = [ ...
sequenceInputLayer(sEMG_channels)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
lstmLayer(numHiddenUnits,'OutputMode','last')
convolution1dLayer(3,25,'Padding','same')
batchNormalizationLayer
reluLayer
dropoutLayer(0.4)
convolution1dLayer(3,10,'Padding','same')
batchNormalizationLayer
reluLayer
fullyConnectedLayer(23)
softmaxLayer
classificationLayer];
However, when I run it. It returns that the convolution1dLayer has 0 temporal dimension and 0 spatial dimension.
my input data XTrain is a 1000*1 cell and in each cell is a 48*30000 double matrix which means that my sEMG data has 48 channels and 30000 time points.
What is the output of lstmLayer(numHiddenUnits,'OutputMode','last') like?
how can i connect LSTM with CNN?
  댓글 수: 3
Yufan
Yufan 2024년 4월 8일
편집: Yufan 2024년 4월 8일
Thank you for answer my question!
But adding
reshape([1, 1, numHiddenUnits])
Error using reshape
Not enough input arguments.
does not work! There is not enough input arguments.
how can i convey the output of LSTM layer into the reshape layer?
I want to conduct a network like this.
Manikanta Aditya
Manikanta Aditya 2024년 4월 8일
layers = [ ...
sequenceInputLayer(48) % Assuming sEMG_channels = 48
lstmLayer(numHiddenUnits, 'OutputMode', 'last')
reshapeLayer([1 1 numHiddenUnits],'Name','reshape') % Reshape LSTM output to have a spatial dimension
convolution1dLayer(3, 25, 'Padding', 'same')
batchNormalizationLayer
reluLayer
dropoutLayer(0.4)
convolution1dLayer(3, 10, 'Padding', 'same')
batchNormalizationLayer
reluLayer
fullyConnectedLayer(23)
softmaxLayer
classificationLayer];

댓글을 달려면 로그인하십시오.

답변 (0개)

카테고리

Help CenterFile Exchange에서 AI for Signals에 대해 자세히 알아보기

제품


릴리스

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by