필터 지우기
필터 지우기

Maximum likelihood fitting for the r Largest Order Statistics

조회 수: 2 (최근 30일)
Yi Lun
Yi Lun 2024년 3월 15일
답변: Sudarsanan A K 2024년 3월 15일
MATLAB Community,
I using the MLE to finding Gumble distribution parameters for the r Largest Order Statistics.
I already have the likelihood function,which is:
L=@(mu,sigma) prod( exp(-exp( - ( data2 (:,size ( data 2,2 ) ) -mu ./ sigma ))) .*prod( sigma^( -1).*exp( -( data2 - mu )./sigma),2))
where data2 is a 40*5 matrix, meaning I picking 1st to 5th largest data in one year for total 40 years.
(if data2 is a 40*1 matrix, L become the Gumble distribution likelihood function.)
The matlab code mle() can only input vector, is there any way to solve this problem?

답변 (1개)

Sudarsanan A K
Sudarsanan A K 2024년 3월 15일
Hello Yi Lun,
To estimate the parameters of a Gumbel distribution using MATLAB's "mle" function for multidimensional data, such as your 40x5 matrix, you can follow this streamlined approach:
  • Reshape Your Data: Convert your matrix into a vector since "mle" is designed for vector inputs. This treats each element in your matrix as an independent observation.
data2 = randn(40, 5); % Example data, replace with your actual data
dataVector = reshape(data2, [], 1); % Reshape your 40x5 matrix into a vector
  • Define the Likelihood Function: Adjust the likelihood function for the Gumbel distribution to work with your reshaped vector data. The likelihood function for the Gumbel distribution, with parameters μ (location) and σ (scale), is given by:
  • Define the Negative Log-Likelihood Function: For the Gumbel distribution, define a custom negative log-likelihood function. It's important to include "varargin" in your function definition to handle any additional arguments passed by "mle".
% Define the custom negative log-likelihood function for the Gumbel distribution
nloglf = @(params, data, varargin) -sum(log((1./params(2)) .* exp(-(data-params(1))./params(2) - exp(-(data-params(1))./params(2)))));
  • Estimate Parameters Using "mle": With your data vector and the negative log-likelihood function ready, use "mle" to estimate the parameters. You'll need to provide initial guesses for the parameters.
% Specify initial parameter guesses
initialParams = [mean(dataVector), std(dataVector)]; % Example initial guesses
% Use mle to estimate parameters, specifying the custom nloglf and initial guesses
paramsEst = mle(dataVector, 'nloglf', nloglf, 'start', initialParams);
% Extract the estimated parameters
mu_est = paramsEst(1);
sigma_est = paramsEst(2);
fprintf('Estimated mu: %f\n', mu_est);
Estimated mu: -0.514545
fprintf('Estimated sigma: %f\n', sigma_est);
Estimated sigma: 1.041869
To validate the estimates, comparison between the empirical Cumulative Distribution Function (CDF) of your original data and the theoretical CDF of a Gumbel distribution using parameters estimated from that data can be done as follows:
% mu_est, sigma_est are your estimated parameters
% Generate Gumbel distributed values using estimated parameters
gumbelVals = mu_est - sigma_est * log(-log(rand(size(dataVector))));
% Plot empirical CDF
[f_empirical, x_empirical] = ecdf(dataVector);
plot(x_empirical, f_empirical, 'b-', 'LineWidth', 1.5); hold on;
% Plot theoretical CDF using estimated parameters
[f_theoretical, x_theoretical] = ecdf(gumbelVals);
plot(x_theoretical, f_theoretical, 'r--', 'LineWidth', 1.5);
legend('Empirical CDF', 'Theoretical CDF', 'Location', 'best');
xlabel('Value');
ylabel('Cumulative Probability');
title('Empirical vs Theoretical Gumbel Distribution');
grid on; hold off;
For further understanding of the critical functions used in this example, refer to the following documentations:
I hope this helps!

카테고리

Help CenterFile Exchange에서 Probability Distributions에 대해 자세히 알아보기

제품


릴리스

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by