이 질문을 팔로우합니다.
- 팔로우하는 게시물 피드에서 업데이트를 확인할 수 있습니다.
- 정보 수신 기본 설정에 따라 이메일을 받을 수 있습니다.
Find the roots of transcendental algebraic equations
조회 수: 7 (최근 30일)
이전 댓글 표시
University
2024년 3월 13일
Hello, I have a transcendental equation that has real and imaginary roots. I used MAPLE to solve the algebraic equation but it MAPLE root finder seems to skip some roots. Please can anyone help to solve the problem with MATLAB.
I want the following:
- Compute the roots of equation q, using the second the equation
- Use the computed roots to compute $\tau$ using the first equation.Computes the minimum values of real part of tau xi = (-0.3, 0.3) and u=(0,3).
- Plot contour of the minimum values of real part of tau for xi = (-0.3, 0.3) and u=(0,3) and chi_a = 1.219 × e-6.
alpha3 = -0.001104;
alpha4 = 0.0826;
alpha6 = -0.0336;
gamma1 = 0.1093;
K1 = 6e-12;
d = 200 microns
chi_a = 1.219 × e-6.
댓글 수: 12
Torsten
2024년 3월 13일
Some parameters are missing (chi_a, xi, u).
And what do you mean by
Computes the minimum values of $\tau$ (tau_min) for each root.
?
Given a root for q, tau follows. What are the "minimum values of tau" ?
Star Strider
2024년 3월 13일
Please code those, and provide values for , ξ, and the others.
Then the first approach would be to plot them as functions of the independent variable, and see what the result it. It might be easiest to do that in the Symbolic Math Toolbox and then use fplot for the plots. Then you can see where the roots are. Use the 'MeshDensity' name-value pair to increase the resolution, if necessary. Also consider using fimplicit with the second equation.
University
2024년 3월 13일
xi = (-0.3, 0.3) and u=(0,3) and chi_a = 1.219 × e-6. Find the minimum of real part of tau. I use tau_min to denotes miniumum of tau. So you can ignore it.
Torsten
2024년 3월 13일
So in 2., you want to compute
tau_min = min_(q is root of 2nd equation) real(tau(q))
?
University
2024년 3월 13일
Compute the roots of q and use the roots to find the minimum of real parts of tau. You can denotes the minimum values of tau with any symbol. Note that I want to run it for xi =(-0.3, 0.3, 10) and u=(0, 3, 10). tau and q depends on xi and u
Sam Chak
2024년 3월 13일
@University, Could you please provide the equations for τ, q, and , and list all the constant values in MATLAB code? This will enable us to promptly evaluate the coded equations using functions from the toolboxes. You can click on the indentation icon to enter the code.
University
2024년 3월 13일
% Define parameters
alpha3 = -0.001104;
alpha4 = 0.0826;
alpha6 = -0.0336;
gamma1 = 0.1093;
K1 = 6e-12;
d = 200e-6; % microns to meters
chi_a = 1.219e-6;
% Compute Hc
Hc_val = pi / d * sqrt(K1 / chi_a);
% Compute eta1 and alpha
eta1_val = 0.5 * (alpha3 + alpha4 + alpha6);
alpha_val = 1 - alpha3^2 / (gamma1 * eta1_val);
% Function for the equation q
q_eqn = @(q, xi, u, tau) q - (1 - alpha_val) * tan(q) + (alpha3 * xi / eta1_val * tan(q) + chi_a * (u * Hc_val)^2 * q) / gamma1 * tau;
% Ranges for xi and u
xi_range = linspace(-0.3, 0.3, 100);
u_range = linspace(0, 3, 100);
% Initialize matrices to store results
real_tau_min = zeros(length(xi_range), length(u_range));
q_values = zeros(length(xi_range), length(u_range), 100); % 100 points for q values
% Loop through xi and u values
for i = 1:length(xi_range)
for j = 1:length(u_range)
xi = xi_range(i);
u = u_range(j);
% Solve for tau
initial_tau_guess = 0; % Initial guess for tau
tau = fsolve(@(tau) q_eqn(0, xi, u, tau), initial_tau_guess, optimset('Display','iter','MaxIter',1000,'MaxFunEvals',5000));
% Solve for q
initial_q_guess = 0; % Initial guess for q
q_vals = fsolve(@(q) q_eqn(q, xi, u, tau), initial_q_guess, optimset('Display','off','MaxIter',1000,'MaxFunEvals',5000));
q_values(i, j, :) = q_vals;
% Compute tau using the first equation
tau = alpha_val * gamma1 * ((4 * K1 * q_vals.^2 / d^2) - (alpha3 * xi / eta1_val) - chi_a * (u * Hc_val)^2)^(-1);
% Find minimum real part of tau
real_tau_min(i, j) = min(real(tau));
end
end
%% Plot contour
figure;
contourf(u_range, xi_range, real_tau_min);
colorbar;
xlabel('u');
ylabel('\xi');
title('Minimum Real Part of \tau');
%% This is my code. I still believe that is still skiping some roots. I am expecting the contour plot to be similar to the attached fig
Torsten
2024년 3월 13일
You have one equation with unknown q in which you have to insert the expression for tau as a function of q. So why do you call "fsolve" twice ?
University
2024년 3월 13일
% Define parameters
alpha3 = -0.001104;
alpha4 = 0.0826;
alpha6 = -0.0336;
gamma1 = 0.1093;
K1 = 6e-12;
d = 200e-6; % microns to meters
chi_a = 1.219e-6;
% Compute Hc
Hc_val = pi / d * sqrt(K1 / chi_a);
% Compute eta1 and alpha
eta1_val = 0.5 * (alpha3 + alpha4 + alpha6);
alpha_val = 1 - alpha3^2 / (gamma1 * eta1_val);
% Function for the equation q
q_eqn = @(q, xi, u) q - (1 - alpha_val) * tan(q) + (alpha3 * xi / eta1_val * tan(q) + chi_a * (u * Hc_val)^2 * q) / gamma1 * (alpha_val * gamma1 * ((4 * K1 * q^2 / d^2) - (alpha3 * xi / eta1_val) - chi_a * (u * Hc_val)^2)^(-1));
% Ranges for xi and u
xi_range = linspace(-0.3, 0.3, 100);
u_range = linspace(0, 3, 100);
% Initialize matrix to store results
real_tau_min = zeros(length(xi_range), length(u_range));
% Loop through xi and u values
for i = 1:length(xi_range)
for j = 1:length(u_range)
xi = xi_range(i);
u = u_range(j);
% Solve for q
q_solution = fsolve(@(q) q_eqn(q, xi, u), 0);
% Compute tau using the first equation
tau = alpha_val * gamma1 * ((4 * K1 * q_solution^2 / d^2) - (alpha3 * xi / eta1_val) - chi_a * (u * Hc_val)^2)^(-1);
% Store the real part of tau
real_tau_min(i, j) = real(tau);
end
end
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
Equation s...
%% Plot contour of minimum real part of tau
figure;
contourf(u_range, xi_range, real_tau_min, 'LineColor', 'none');
colorbar;
xlabel('u');
ylabel('\xi');
title('Minimum Real Part of \tau');
% I have been able to correct my codes. I was what you mean. Is still
% giving me similar results. I still believe is skipping some roots. The
% results should be similarly to the attached figure.
Torsten
2024년 3월 13일
편집: Torsten
2024년 3월 13일
If you don't have an asymtotic formula for the roots and thus good initial values for a root finder, it will be hard to catch them - especially because of the poles from tan(q). Note that "fsolve" can only find one root in each call.
% Define parameters
alpha3 = -0.001104;
alpha4 = 0.0826;
alpha6 = -0.0336;
gamma1 = 0.1093;
K1 = 6e-12;
d = 200e-6; % microns to meters
chi_a = 1.219e-6;
% Compute Hc
Hc_val = pi / d * sqrt(K1 / chi_a);
% Compute eta1 and alpha
eta1_val = 0.5 * (alpha3 + alpha4 + alpha6);
alpha_val = 1 - alpha3^2 / (gamma1 * eta1_val);
xi = 0.2;
u = 1.5;
q_eqn = @(q) q - (1 - alpha_val) * tan(q) + (alpha3 * xi / eta1_val * tan(q) + chi_a * (u * Hc_val)^2 * q) / gamma1 * (alpha_val * gamma1 * ((4 * K1 * q^2 / d^2) - (alpha3 * xi / eta1_val) - chi_a * (u * Hc_val)^2).^(-1));
q = -5:0.1:5;
plot(q,arrayfun(@(q)q_eqn(q),q))
University
2024년 3월 13일
This was the same problem I was facing in MAPLE. I would apprepriate if you can help out.
Torsten
2024년 3월 13일
편집: Torsten
2024년 3월 13일
@Star Strider suggested scanning the function - maybe it will work if you don't know anything about the root(s) you expect to get. For the example given, only q=0 seems to solve the equation:
% Define parameters
alpha3 = -0.001104;
alpha4 = 0.0826;
alpha6 = -0.0336;
gamma1 = 0.1093;
K1 = 6e-12;
d = 200e-6; % microns to meters
chi_a = 1.219e-6;
% Compute Hc
Hc_val = pi / d * sqrt(K1 / chi_a);
% Compute eta1 and alpha
eta1_val = 0.5 * (alpha3 + alpha4 + alpha6);
alpha_val = 1 - alpha3^2 / (gamma1 * eta1_val);
xi = 0.2;
u = 1.5;
q_eqn = @(q) q - (1 - alpha_val) * tan(q) + (alpha3 * xi / eta1_val * tan(q) + chi_a * (u * Hc_val)^2 * q) / gamma1 * (alpha_val * gamma1 * ((4 * K1 * q^2 / d^2) - (alpha3 * xi / eta1_val) - chi_a * (u * Hc_val)^2).^(-1));
q = -80:0.001:80;
fq = arrayfun(@(q)q_eqn(q),q);
qq=q(abs(fq)<1e-10).'
qq = 0
답변 (0개)
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!오류 발생
페이지가 변경되었기 때문에 동작을 완료할 수 없습니다. 업데이트된 상태를 보려면 페이지를 다시 불러오십시오.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
아시아 태평양
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)