Solving the differential equation by the Runge-Kutta method (ode45)

조회 수: 4 (최근 30일)
Babr
Babr 2024년 3월 6일
댓글: Babr 2024년 3월 6일
I want solve this equation numerically and use fourth order Runge-Kutta method. (ode45)
What is the code?
My code:
function dfdt = odefun2(x,y)
dfdt = [y(2); y(1) .^(-3) - (w .*r0 ./c) .^2 .*phi2 .*y(1)];
end
****
clc, clear, close all;
w = 2e16;
r0 = 30e-6;
c = 3e8;
p = 2.5;
f = 1;
Wp0 = p .*c ./r0;
a02 = 0.050;
phi2 = (Wp0 ./w) .^2 .*(3 .*a02 ./f .^4) ./4 ./(1 + a02 ./2 ./f .^2) .^1.5...
.*(1 + (56 + a02 ./f .^2) ./3 ./(1 + a02 ./2 ./f .^2) ./p .^2 ./f .^2);
[t, y] = ode45(@odefun2,[0 3],[1,0]);
******
But it gives an error ..
I have attached two pictures to the question, look at them if you need.
  댓글 수: 5
Torsten
Torsten 2024년 3월 6일
편집: Torsten 2024년 3월 6일
According to your code, your boundary conditions are
f(zeta=0) = 1
df/dzeta (zeta=0) = 0
Is this correct ?
Did you differentiate depsilon/dzeta somewhere to insert it into the differential equation ? I cannot find it in your code.
Babr
Babr 2024년 3월 6일
Yes, the boundary conditions you said are correct.
The second term in right hand of equation has been usually overlooked in most of the studies in view of negligible impact.

댓글을 달려면 로그인하십시오.

채택된 답변

Torsten
Torsten 2024년 3월 6일
편집: Torsten 2024년 3월 6일
[t, y] = ode45(@odefun2,[0 3],[1,0]);
plot(t,y(:,1))
function dfdt = odefun2(x,y)
w = 2e16;
r0 = 30e-6;
c = 3e8;
p = 2.5;
Wp0 = p .*c ./r0;
a02 = 0.050;
phi2 = (Wp0/w)^2 * 3*a02/y(1)^4 / (4*(1+a02/(2*y(1)^2))^1.5) *...
(1 + 1/(p^2*y(1)^2) * (56+a02/y(1)^2)/(3*(1+a02/(2*y(1)^2))^0.5));
dfdt = [y(2); y(1) .^(-3) - (w .*r0 ./c) .^2 .*phi2 .*y(1)];
end
  댓글 수: 5
Torsten
Torsten 2024년 3월 6일
편집: Torsten 2024년 3월 6일
syms f(x) p c r0 a02 w
Wp0 = p*c/r0;
e = 1 - (Wp0/w)^2 / sqrt(1+a02/(2*f^2)) * (1- 1/p^2 * 3*a02/f^4 / sqrt(1+a02/(2*f^2)));
simplify(diff(e,x))
ans(x) = 
and df/dx in your code is y(2).
[t, y] = ode45(@odefun2,[0 3],[1,0]);
plot(t,y(:,1))
function dfdt = odefun2(x,y)
w = 2e16;
r0 = 30e-6;
c = 3e8;
p = 2.5;
Wp0 = p .*c ./r0;
a02 = 0.050;
phi2 = (Wp0/w)^2 * 3*a02/y(1)^4 / (4*(1+a02/(2*y(1)^2))^1.5) *...
(1 + 1/(p^2*y(1)^2) * (56+a02/y(1)^2)/(3*(1+a02/(2*y(1)^2))^0.5));
e = 1 - (Wp0/w)^2 / sqrt(1+a02/(2*y(1)^2)) * (1- 1/p^2 * 3*a02/y(1)^4 / sqrt(1+a02/(2*y(1)^2)));
sigma1 = a02/(2*y(1)^2) + 1;
dedx = 3*a02^2*c^2*y(2)/(r0^2*w^2*y(1)^7*sigma1^2) ...
-12*a02*c^2*y(2)/(r0^2*w^2*y(1)^5*sigma1)...
-a02*c^2*p^2*y(2)/(2*r0^2*w^2*y(1)^3*sigma1^1.5);
dfdt = [y(2); y(1)^(-3)-1/(2*e)*dedx*y(2)-(w*r0/c)^2*phi2*y(1)];
end
Babr
Babr 2024년 3월 6일
I don't know how to thank you ..

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Numerical Integration and Differential Equations에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by