Why RMSE doens't decrease in deeplearning toolbox?

조회 수: 7 (최근 30일)
영진 김
영진 김 2024년 2월 19일
답변: Angelo Yeo 2024년 2월 19일
Hi, I'm stduying Matlab deep learning toolbox, and confused about using regression layer.
I want to make regression model for 8 input and 1 output. Input and output are all feature.
How can I make model which RMSE goes dereasing?
Should I control hyperparameter to fix this situation?
Plz help my project. Thanks.
(data file is uploaded)
clc;clear;
filename = "training_set2.csv";
tbl = readtable(filename,'TextType','string');
head(tbl)
edges = 0.41:0.01:0.54; %discretize data
responses=cell2mat(table2cell(tbl(:,"FM")));
tbl(:,"FM") = cell2table(num2cell(discretize(responses,edges)));
labelName = "FM";
numObservations = size(tbl,1);
numObservationsTrain = floor(0.8*numObservations);
numObservationsValidation = floor(0.15*numObservations);
numObservationsTest = numObservations - numObservationsTrain - numObservationsValidation;
idx = randperm(numObservations);
idxTrain = idx(1:numObservationsTrain);
idxValidation = idx(numObservationsTrain+1:numObservationsTrain+numObservationsValidation);
idxTest = idx(numObservationsTrain+numObservationsValidation+1:end);
tblTrain = cell2mat(table2cell(tbl(idxTrain,1:9)));
responseTrain = cell2mat(table2cell(tbl(idxTrain,10)));
tblValidation = cell2mat(table2cell(tbl(idxValidation,1:9)));
responseValidation = cell2mat(table2cell(tbl(idxValidation,10)));
tblTest = cell2mat(table2cell(tbl(idxTest,1:9)));
responseTest = cell2mat(table2cell(tbl(idxTest,10)));
numFeatures = size(tbl,2) - 1;
numClasses = 1;
layers = [
featureInputLayer(numFeatures)
fullyConnectedLayer(50)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer
regressionLayer];
miniBatchSize = 1;
options = trainingOptions('adam', ...
'InitialLearnRate',0.0001, ...
'MiniBatchSize',miniBatchSize, ...
'MaxEpochs',50,...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'ValidationData',{tblValidation,responseValidation}, ...
'Verbose',false);
net = trainNetwork(tblTrain,responseTrain,layers,options);

답변 (1개)

Angelo Yeo
Angelo Yeo 2024년 2월 19일
The training environment is not ideal to use deep neural networks. A few comments:
  1. Why did you discretize the output, "FM", and use softmaxLayer and regressionLayer at the same time? There is no point to discretize "FM" but to use "regressionLayer".
  2. The number of samples is too small. The total number of data is 152. Which is too small to train a neural network.
  3. Also, it is hard to distinguish between the samples. Most of features are identical or correlated.
I want to recommend you take the following courses for a better understanding for theories behind Deep Learning.

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

제품


릴리스

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by