Validation dataに対するaugmentationについて

조회 수: 22 (최근 30일)
Mamiko Fukuta
Mamiko Fukuta 2024년 1월 25일
이동: Kojiro Saito 2024년 2월 20일
深層学習により画像の分類をしたいと考えています。
あまり画像が多くなく、群間の画像数をそろえるためaugmentationをしますが、データの増やし方と分け方について教えていただきたいです。
1)データからテストをとりわけ、残りを増やしてから訓練と検証に分ける
2)データを訓練、検証、テストにわけ、訓練のみ増やす
3)データを訓練、検証、テストにわけ、訓練と検証を増やす
4)データを訓練、検証、テストにわけ、3つとも増やす
の4パターンを考えていますが、推奨される方法はあるのでしょうか。
スクリプトの例を検索して参照した限りでは2の方法をとっているものをいくつか見つけましたが、他の方法の例があればご案内いただけないでしょうか。
また、1)の方法は過学習につながる気がしますが、やってみて過学習がなければ行って問題ないのかどうか知りたいです。

채택된 답변

covao
covao 2024년 2월 7일
이동: Kojiro Saito 2024년 2월 20일
MATLABに関する情報ではありませんが、下記記事によると、深層学習のデータセットについて、通常は、訓練データに対してのみデータ拡張するとの記載があります。
モデルのパフォーマンスを公正に評価するためと考えられます。
"Image data augmentation is typically only applied to the training dataset, and not to the validation or test dataset. This is different from data preparation such as image resizing and pixel scaling; they must be performed consistently across all datasets that interact with the model."
以下にAugmentationに関連する情報があります
  댓글 수: 1
Mamiko Fukuta
Mamiko Fukuta 2024년 2월 8일
이동: Kojiro Saito 2024년 2월 20일
回答ありがとうございます。
基本的には訓練データに対して行うということのようですね。
以下のデータの増やし方についての論文を見つけたので,訓練データ以外の増幅を行うということがあるのか疑問に思った次第です。

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Image Processing and Computer Vision에 대해 자세히 알아보기

태그

제품


릴리스

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!