Custom DDPG Algorithm in MATLAB R2023b: Performing Gradient Ascent for Actor Network

조회 수: 7 (최근 30일)
Hello MATLAB community,
I am working on implementing a custom Deep Deterministic Policy Gradients (DDPG) algorithm in MATLAB R2023b. In the DDPG algorithm, during the training of the actor network, the Q value produced by the critic network is set as the objective function for the actor network. The standard approach involves using gradient ascent to update the actor network based on these Q values.
My question pertains to the use of the gradient function from the Reinforcement Learning Toolbox to calculate gradients. Following this, how can I perform gradient ascent, as the update function from the same toolbox seems to default to gradient descent and not gradient ascent? I would appreciate any insights or examples on implementing gradient ascent in this context.
Thank you for your assistance!

채택된 답변

Venu
Venu 2024년 1월 8일
편집: Venu 2024년 1월 8일
Gradient ascent is the same as gradient descent except that you don't multiply your step (learning_rate * gradients) by a negative sign. So your step has the same sign as your gradient.
If the update function defaults to gradient descent, you can adjust the sign of the gradients before updating the parameters.
actorNetwork.Parameters = actorNetwork.Parameters + learningRate * -gradients; (% Perform gradient ascent by adjusting the sign of the gradients)
You can refer to example in this documentation for 'gradient' function
Hope this helps!
  댓글 수: 1
Syed Adil Ahmed
Syed Adil Ahmed 2024년 8월 13일
Hey @Venu,
Is it possible to provide the documentation link again ? It shows up as:
"The page you were looking for does not exist. Use the search box or browse topics below to find the page you were looking for."
Thank you

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Reinforcement Learning Toolbox에 대해 자세히 알아보기

제품


릴리스

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by