Why is dlgradient giving different answers?

조회 수: 1 (최근 30일)
Vellapandi M Research Scholar
Vellapandi M Research Scholar 2023년 12월 18일
답변: Angelo Yeo 2023년 12월 18일
When I use the dlgradient function to compute the gradient of the expression (Parameters.fc2.Weights * tanh(Parameters.fc1.Weights * y(:,1) + Parameters.fc1.Bias) + Parameters.fc2.Bias) with respect to Parameters.fc2.Bias, it yields varying results instead of a consistent value of 1. According to theoretical calculations, it should be 1, but for different values of y(:,i), I observe discrepancies. What might be the issue?
Parameters = struct;
stateSize = 1;
hiddenSize = 20;
Parameters.fc1 = struct;
sz_fc1 = [hiddenSize stateSize];
Parameters.fc1.Weights = initializeGlorot(sz_fc1, hiddenSize, stateSize);
Parameters.fc1.Bias = initializeZeros([hiddenSize 1]);
Parameters.fc2 = struct;
sz_fc2 = [stateSize hiddenSize];
Parameters.fc2.Weights = initializeGlorot(sz_fc2, stateSize, hiddenSize);
Parameters.fc2.Bias = initializeZeros([stateSize 1]);
y(:,1) = 1;
y(:,2) = 0.976;
gradient1.fc2.Bias = dlgradient(Parameters.fc2.Weights * (tanh(Parameters.fc1.Weights * y(:,1) + Parameters.fc1.Bias)) + Parameters.fc2.Bias, Parameters.fc2.Bias)
gradient2.fc2.Bias = dlgradient(Parameters.fc2.Weights * (tanh(Parameters.fc1.Weights * y(:,2) + Parameters.fc1.Bias)) + Parameters.fc2.Bias, Parameters.fc2.Bias)
  댓글 수: 1
Matt J
Matt J 2023년 12월 18일
Attach Parameters and y in a .mat file so we can test your code.

댓글을 달려면 로그인하십시오.

채택된 답변

Angelo Yeo
Angelo Yeo 2023년 12월 18일
You can try to incorporate dlfeval when using dlgradient. You can get the results of 1's as expected.
Parameters = struct;
stateSize = 1;
hiddenSize = 20;
Parameters.fc1 = struct;
sz_fc1 = [hiddenSize stateSize];
Parameters.fc1.Weights = initializeGlorot(sz_fc1, hiddenSize, stateSize);
Parameters.fc1.Bias = initializeZeros([hiddenSize 1]);
Parameters.fc2 = struct;
sz_fc2 = [stateSize hiddenSize];
Parameters.fc2.Weights = initializeGlorot(sz_fc2, stateSize, hiddenSize);
Parameters.fc2.Bias = initializeZeros([stateSize 1]);
y(:,1) = 1;
y(:,2) = 0.976;
[res1, res2] = dlfeval(@gradFun, Parameters, y)
res1 =
1×1 single dlarray 1
res2 =
1×1 single dlarray 1
function [res1, res2] = gradFun(Parameters, y)
res1 = dlgradient(Parameters.fc2.Weights * (tanh(Parameters.fc1.Weights * y(:,1) + Parameters.fc1.Bias)) + Parameters.fc2.Bias, Parameters.fc2.Bias);
res2 = dlgradient(Parameters.fc2.Weights * (tanh(Parameters.fc1.Weights * y(:,2) + Parameters.fc1.Bias)) + Parameters.fc2.Bias, Parameters.fc2.Bias);
end
function weights = initializeGlorot(sz,numOut,numIn)
Z = 2*rand(sz,'single') - 1;
bound = sqrt(6 / (numIn + numOut));
weights = bound * Z;
weights = dlarray(weights);
end
function parameter = initializeZeros(sz)
parameter = zeros(sz,'single');
parameter = dlarray(parameter);
end

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Dimensionality Reduction and Feature Extraction에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by