Plotting is not quie correct

조회 수: 2 (최근 30일)
Matthew Palermo
Matthew Palermo 2023년 12월 9일
댓글: Walter Roberson 2023년 12월 10일
I am trying to plot the temeprature curves for emissivity against the wavelength using Planck's Law. The plot I am getting is pretty close, except there is no decrease in emissivity as the wavelength gets very large. I can't tell if it is the way the for loops are running or the equations I typed in. I have attachedmy current code and the graph I am trying to duplicate for clarification. Any help is greatly appreciated. Thanks!
C1 = 3.742*10^8; % First constant W-micron^4/m^2
C2 = 1.4388*10^4; %Second constant microns-K
T = 100:100:6000; %Temperature in Kelvins
lambda = 0.1:0.1:25; %wavelength in microns
lengthT = length(T);
length_L = length(lambda);
E = zeros(lengthT,length_L);
for i = 1:lengthT
for j = 1:length_L
term1(i,j) = C2./(lambda(j)*T(i));
end
E= C1./((lambda(j)^5)*exp(term1-1));
end
loglog(lambda, E)
ylim([1*10^-1,1*10^9])
xlim([0, 2.5*10^1])
  댓글 수: 1
Walter Roberson
Walter Roberson 2023년 12월 10일
In order to produce that kind of graph, your expression would need some term that first increased in time and then decreased in time. I am not finding any term in your code that has that property ?

댓글을 달려면 로그인하십시오.

답변 (1개)

Torsten
Torsten 2023년 12월 9일
Maybe
for i = 1:lengthT
for j = 1:length_L
term1(i,j) = C2./(lambda(j)*T(i));
E(i,j)= C1./((lambda(j)^5)*exp(term1(i,j)-1));
end
%E= C1./((lambda(j)^5)*exp(term1-1));
end
instead of
for i = 1:lengthT
for j = 1:length_L
term1(i,j) = C2./(lambda(j)*T(i));
end
E= C1./((lambda(j)^5)*exp(term1-1));
end
?
  댓글 수: 4
Image Analyst
Image Analyst 2023년 12월 10일
@Matthew Palermo for completeness, could you post your complete, corrected code? It might help other people. 🙂
Torsten
Torsten 2023년 12월 10일
편집: Torsten 2023년 12월 10일
I tried that earlier and got the same result
Strange. I get a similar result as in your graphic.
C1 = 3.742*10^8; % First constant W-micron^4/m^2
C2 = 1.4388*10^4; %Second constant microns-K
T = 100:100:6000; %Temperature in Kelvins
lambda = 0.1:0.1:25; %wavelength in microns
lengthT = length(T);
length_L = length(lambda);
E = zeros(lengthT,length_L);
for i = 1:lengthT
for j = 1:length_L
term1(i,j) = C2./(lambda(j)*T(i));
E(i,j)= C1./((lambda(j)^5)*exp(term1(i,j)-1));
end
%E= C1./((lambda(j)^5)*exp(term1-1));
end
loglog(lambda, E)
ylim([1*10^-1,1*10^9])
xlim([0, 2.5*10^1])

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 MATLAB에 대해 자세히 알아보기

제품


릴리스

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by