machine learning toolにて、データ​長長さのエラー発生し​ています。

조회 수: 1 (최근 30일)
SHromaneko
SHromaneko 2023년 12월 6일
답변: SHromaneko 2023년 12월 13일
機械学習を勧めていますが、convolution1dLayerにて下記のエラーが発生します。
Error using trainNetwork
Invalid network
Caused by: Network: Incompatible input and output sequence lengths. The network must return sequences with the same length as the input data or a sequence with length one.
私の環境で使っている学習用データを添付します。
添付の通り、学習データのインプットとアウトプットの長さは同じはずですが、これで実行してもエラーになってしまいます。
原因わかりますでしょうか?
[numChannels_in, ~] = size(XdTrain_loading{1});
[numChannels_out, ~] = size(TdTrain_loading{1});
options.MaxEpochs = 50;
% トレーニングデータの最短シーケンスの長さを取得
minLength = min(cellfun(@(x) size(x, 2), XdTrain_loading));
layers = [
sequenceInputLayer(numChannels_in,'MinLength', minLength)
convolution1dLayer(11, 96)
fullyConnectedLayer(numChannels_out)
regressionLayer
];
net_loading_diff = trainNetwork(XdTrain_loading,TdTrain_loading,layers,options);

채택된 답변

Aiswarya
Aiswarya 2023년 12월 12일
こんにちは、私英語質問えます
I understand that you are getting an error regarding incompatible input and output sequence length. You can ensure that the output is the same size as input by using padding.
You can view the size of the different layers in your network using the below command (https://www.mathworks.com/help/deeplearning/ref/analyzenetwork.html) :
analyzeNetwork(layers)
On using this command on your 'layers' variable, the output obtained is given below:
Note that the regressionoutput is not of the same length(1229) as the sequenceinput layer(1239). This is the reason why you are getting the error. To avoid this you can use "casual" padding in your 1D Convolution layer, which left pads the input to make the input and output sequence length equal. You can modify your "layers" variable as follows:
layers = [
sequenceInputLayer(numChannels_in,'MinLength', minLength)
convolution1dLayer(11, 96,Padding='causal')
fullyConnectedLayer(numChannels_out)
regressionLayer
];

추가 답변 (1개)

SHromaneko
SHromaneko 2023년 12월 13일
出来ました、ありがとうございます!!

카테고리

Help CenterFile Exchange에서 イメージを使用した深層学習에 대해 자세히 알아보기

제품


릴리스

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!