precision-recall curve for faster rcnn

조회 수: 2 (최근 30일)
ahmad
ahmad 2023년 11월 27일
답변: Walter Roberson 2023년 11월 28일
hi
i want to find precision-recall curve of my tranied faster rcnn detector.i tried thi code
testData = transform(testData,@(data)preprocessData(data,inputSize));
detectionResults = detect(detector,testData,'MinibatchSize',4);
classID = 1;
metrics = evaluateObjectDetection(detectionResults,testData);
precision = metrics.ClassMetrics.Precision{classID};
recall = metrics.ClassMetrics.Recall{classID};
figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f', metrics.ClassMetrics.mAP(classID)))
but it shows error on evaluateObjectDetection that this is not in matlab second is that it show error that dot errorr is not worked in this( metrics.ClassMetrics.Precision{classID};)
so is there any other way to find precission-recall for multiple classes

채택된 답변

Walter Roberson
Walter Roberson 2023년 11월 28일
https://www.mathworks.com/help/vision/ref/evaluateobjectdetection.html was introduced in R2023b, but you have R2023a.
There are no functions available in R2023a that return metrics.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Computer Vision Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by