Error in fzero usage

조회 수: 15 (최근 30일)
Simone Perotti
Simone Perotti 2023년 10월 21일
댓글: Torsten 2023년 10월 21일
Hi, I am I created a function that I need to find the zero of a function using the function fzero but when I try to use it it gives me error saying that I used too many arguments in input.
Could someone tell me where I am going wrong and how to fix it. I leave below a code sketch
clear variables; close all; clc
S0 = 100;
K = 80;
r = 0.05;
T = 1.0;
mkt_price = 101.32;
q = 0.0;
resu = impliedVola(S0,K,r,T,mkt_price,q)
function resu = impliedVola(S0,K,r,T,mkt_price,q)
options = optimset('fzero');
options = optimset(options,'TolX',1e-9,'Display','off');
[x,~,exitflag] = fzero(@difference, 0.5, options, ...
S0, K, r, T, mkt_price, q);
if(exitflag ~= 1)
disp('Did not find value')
resu = 0;
else
resu = x;
end
end
function resu = difference(sigma,S,K,r,T,mkt_price,q)
bs_price = blackScholes(sigma,S,K,r,T,r,q);
resu = mkt_price - bs_price;
end
function resu = blackScholes(sigma,S,K,r,T,q)
d1 = (log(S./K) + (r - q + 0.5*sigma^2).*T) ./ (sigma.*sqrt(T));
d2 = d1 - sigma*sqrt(T);
resu = S*exp(-r*T)*normal(d1,0,1) - K*exp(-r*T)*normal(d2,0,1);
end
function resu = normal(x,mu,sigma)
z = (x - mu) ./ sigma;
resu = 0.5 * erfc(-z ./ sqrt(2));
end

채택된 답변

Torsten
Torsten 2023년 10월 21일
편집: Torsten 2023년 10월 21일
bs_price = blackScholes(sigma,S,K,r,T,r,q);
function resu = blackScholes(sigma,S,K,r,T,q)
Do you see the different number of input arguments in the function call and the function definition ?
And if you plot your function, you will see that it has no zeros:
S0 = 100;
K = 80;
r = 0.05;
T = 1.0;
mkt_price = 101.32;
q = 0.0;
sigma = 0.01:0.01:10;
resu = arrayfun(@(sigma)difference(sigma,S0,K,r,T,mkt_price,q),sigma);
plot(sigma,resu)
function resu = impliedVola(S0,K,r,T,mkt_price,q)
options = optimset('fzero');
options = optimset(options,'TolX',1e-9,'Display','off');
[x,~,exitflag] = fzero(@difference, 0.5, options, ...
S0, K, r, T, mkt_price, q);
if(exitflag ~= 1)
disp('Did not find value')
resu = 0;
else
resu = x;
end
end
function resu = difference(sigma,S,K,r,T,mkt_price,q)
bs_price = blackScholes(sigma,S,K,r,T,q);
resu = mkt_price - bs_price;
end
function resu = blackScholes(sigma,S,K,r,T,q)
d1 = (log(S./K) + (r - q + 0.5*sigma^2).*T) ./ (sigma.*sqrt(T));
d2 = d1 - sigma*sqrt(T);
resu = S*exp(-r*T)*normal(d1,0,1) - K*exp(-r*T)*normal(d2,0,1);
end
function resu = normal(x,mu,sigma)
z = (x - mu) ./ sigma;
resu = 0.5 * erfc(-z ./ sqrt(2));
end
  댓글 수: 2
Simone Perotti
Simone Perotti 2023년 10월 21일
Oh my god what a shame, I apologize terribly for the stupid question I didn't even realize it. Thank you very much in the meanwhile
Torsten
Torsten 2023년 10월 21일
If I had to apologize for all my stupid programming errors, there would be quite a long list -:)

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Construct and Work with Object Arrays에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by