Problem fitting the curve with fminsearch

조회 수: 4 (최근 30일)
Xabier Tamayo
Xabier Tamayo 2023년 10월 9일
편집: Matt J 2023년 10월 9일
I have been trying to understand how fminsearch works or the result it gives me for at least a while (it doesnt fit my curve). I am trying to fit the curve but when I set the function to be in polynomial or sinusoidal form it does not fit the curve to the experimental like it does with the cftool.
One of the codes I am using is the following:
theta_i = -29:1:30;
theta_i = theta_i';
x_b = 3.85802467750551e-09 1.23456782463727e-07 9.37499560538235e-07 3.95060948021886e-06 1.20562544833058e-05 2.99995500044892e-05 6.48397188022232e-05 0.000126411762446210 0.000227786552702836 0.000385728056932932 0.000621145743629370 0.000959539347420657 0.00143143208410479 0.00207278707531322 0.00292540015345999 0.00403726036144925 0.00546286733815604 0.00726349240257385 0.00950736754606585 0.0122697837643895 0.0156330772872862 0.0196864794049803 0.0245258028990383 0.0302529357565231 0.0369751111287854 0.0448039216911671 0.0538540470230045 0.0642416647639122 0.0760825205564049 0.0894896386199658 0.104570664671209 0.121424846210700 0.140139672234976 0.160787215323602 0.183420243663010 0.208068198426751 0.234733162130625 0.263385974705427 0.293962684097702 0.326361544655273 0.360440796277300 0.396017466794855 0.432867435598924 0.470726974599819 0.509295940232559 0.548242725593590 0.587210994794329 0.625828114407609 0.663715074344481 0.700497560449578 0.735817714176249 0.769346003776893 0.800792550572930 0.829917216722031 0.856537778826176 0.880535591658960 0.901858288833670 0.920519265282326 0.936593924749780 0.950212931632136 ; % I have transposed the data just to copy it here so that it does not occupy much, it is a 60x1 matrix.
% if it were to be plotted it would look like plot(theta_i,x_b), the theta_i vector is the horizontal axis and the x_b the vertical.
IG = ones(1,6);
dF = [theta_i,x_b];
x33 = dF(:,1); %same as theta_i
y33 = dF(:,2); %same as x_b
P = fit2(dF,IG);
a1 = P(1);
a2 = P(2);
a3 = P(3);
a4 = P(4);
a5 = P(5);
a6 = P(6);
yfit = a1.*x33.^5 + a2.*x33.^4 + a3.*x33.^3 + a4.*x33.^2 + a5.*x33 + a6;
plot(theta_i,x_b);
hold on
plot (theta_i,yfit);
hold off
%% And the function is the next one:
function P = fit2(dF,IG)
x33 = dF(:,1);
y33 = dF(:,2);
function [ds] = fit(IG)
a1 = IG(1);
a2 = IG(2);
a3 = IG(3);
a4 = IG(4);
a5 = IG(5);
a6 = IG(6);
f33 = a1.*x33.^5 + a2.*x33.^4 + a3.*x33.^3 + a4.*x33.^2 + a5.*x33 + a6;
ds = (f33-y33).^2;
ds = sum(ds);
end
P = fminsearch (@fit,IG);
end
%maybe there are sombe bugs because y have edited a little bit for this post, but the idea i want to express i think its clear

채택된 답변

Fabio Freschi
Fabio Freschi 2023년 10월 9일
편집: Fabio Freschi 2023년 10월 9일
I would use lsqnonlin: it's more general than polyfit suggested by @Torsten (that in this case would work perfectly). Qualitatively, it seems that the resulting fitting is good. In addition I have cleaned your code a little.
% your data
theta_i = (-29:1:30).';
x_b = [3.85802467750551e-09 1.23456782463727e-07 9.37499560538235e-07 3.95060948021886e-06 1.20562544833058e-05 2.99995500044892e-05 6.48397188022232e-05 0.000126411762446210 0.000227786552702836 0.000385728056932932 0.000621145743629370 0.000959539347420657 0.00143143208410479 0.00207278707531322 0.00292540015345999 0.00403726036144925 0.00546286733815604 0.00726349240257385 0.00950736754606585 0.0122697837643895 0.0156330772872862 0.0196864794049803 0.0245258028990383 0.0302529357565231 0.0369751111287854 0.0448039216911671 0.0538540470230045 0.0642416647639122 0.0760825205564049 0.0894896386199658 0.104570664671209 0.121424846210700 0.140139672234976 0.160787215323602 0.183420243663010 0.208068198426751 0.234733162130625 0.263385974705427 0.293962684097702 0.326361544655273 0.360440796277300 0.396017466794855 0.432867435598924 0.470726974599819 0.509295940232559 0.548242725593590 0.587210994794329 0.625828114407609 0.663715074344481 0.700497560449578 0.735817714176249 0.769346003776893 0.800792550572930 0.829917216722031 0.856537778826176 0.880535591658960 0.901858288833670 0.920519265282326 0.936593924749780 0.950212931632136].'; % I have transposed the data just to copy it here so that it does not occupy much, it is a 60x1 matrix.
% fitting function
yfit = @(a)a(1)*theta_i.^5+a(2)*theta_i.^4+a(3)*theta_i.^3+a(4)*theta_i.^2+a(5)*theta_i+a(6);
% function to minimize
fun = @(a)yfit(a)-x_b;
% initial values
x0 = ones(6,1);
x = lsqnonlin(fun,x0);
Local minimum possible. lsqnonlin stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
% plot
figure, hold on
plot(theta_i,x_b);
plot (theta_i,yfit(x));
  댓글 수: 4
Fabio Freschi
Fabio Freschi 2023년 10월 9일
@Torsten you are right... lsqnonlin is an automatic choice for me as first attempt with fitting
Fabio Freschi
Fabio Freschi 2023년 10월 9일
이동: Matt J 2023년 10월 9일
I changed the lsqnonlin with fminsearch. I had to play a little with options because I started from a blind initial guess
theta_i = (-29:1:30).';
x_b = [3.85802467750551e-09 1.23456782463727e-07 9.37499560538235e-07 3.95060948021886e-06 1.20562544833058e-05 2.99995500044892e-05 6.48397188022232e-05 0.000126411762446210 0.000227786552702836 0.000385728056932932 0.000621145743629370 0.000959539347420657 0.00143143208410479 0.00207278707531322 0.00292540015345999 0.00403726036144925 0.00546286733815604 0.00726349240257385 0.00950736754606585 0.0122697837643895 0.0156330772872862 0.0196864794049803 0.0245258028990383 0.0302529357565231 0.0369751111287854 0.0448039216911671 0.0538540470230045 0.0642416647639122 0.0760825205564049 0.0894896386199658 0.104570664671209 0.121424846210700 0.140139672234976 0.160787215323602 0.183420243663010 0.208068198426751 0.234733162130625 0.263385974705427 0.293962684097702 0.326361544655273 0.360440796277300 0.396017466794855 0.432867435598924 0.470726974599819 0.509295940232559 0.548242725593590 0.587210994794329 0.625828114407609 0.663715074344481 0.700497560449578 0.735817714176249 0.769346003776893 0.800792550572930 0.829917216722031 0.856537778826176 0.880535591658960 0.901858288833670 0.920519265282326 0.936593924749780 0.950212931632136].'; % I have transposed the data just to copy it here so that it does not occupy much, it is a 60x1 matrix.
% if it were to be plotted it would look like plot(theta_i,x_b), the theta_i vector is the horizontal axis and the x_b the vertical.
% fitting function
yfit = @(a)a(1)*theta_i.^5+a(2)*theta_i.^4+a(3)*theta_i.^3+a(4)*theta_i.^2+a(5)*theta_i+a(6);
% function to minimize
fun = @(a)sum((yfit(a)-x_b).^2);
% initial values
x0 = ones(6,1);
% options
options = optimset('MaxFunEvals',1e6,'MaxIter',1e6,'TolX',1e-16,'TolFun',1e-16);
% fminsearch
[x,fval,exitflag,output] = fminsearch(fun,x0,options);
% plot
figure, hold on
plot(theta_i,x_b);
plot (theta_i,yfit(x));

댓글을 달려면 로그인하십시오.

추가 답변 (3개)

Torsten
Torsten 2023년 10월 9일
편집: Torsten 2023년 10월 9일
Using a polynomial of degree 5 to fit your data is a bad idea because the higher the degree, the greater the oscillations between the measurement data.
If you insist on your idea, use "polyfit" instead of your code.

Matt J
Matt J 2023년 10월 9일
편집: Matt J 2023년 10월 9일
but when I set the function to be in polynomial or sinusoidal form it does not fit the curve to the experimental like it does with the cftool
Are you sure you wouldn't rather use a Gaussian curve model? It seems much more appropriate, and is easily obtained by downloading gaussfitn:
theta_i = -29:1:30;
x_b = [3.85802467750551e-09 1.23456782463727e-07 9.37499560538235e-07 3.95060948021886e-06 1.20562544833058e-05 2.99995500044892e-05 6.48397188022232e-05 0.000126411762446210 0.000227786552702836 0.000385728056932932 0.000621145743629370 0.000959539347420657 0.00143143208410479 0.00207278707531322 0.00292540015345999 0.00403726036144925 0.00546286733815604 0.00726349240257385 0.00950736754606585 0.0122697837643895 0.0156330772872862 0.0196864794049803 0.0245258028990383 0.0302529357565231 0.0369751111287854 0.0448039216911671 0.0538540470230045 0.0642416647639122 0.0760825205564049 0.0894896386199658 0.104570664671209 0.121424846210700 0.140139672234976 0.160787215323602 0.183420243663010 0.208068198426751 0.234733162130625 0.263385974705427 0.293962684097702 0.326361544655273 0.360440796277300 0.396017466794855 0.432867435598924 0.470726974599819 0.509295940232559 0.548242725593590 0.587210994794329 0.625828114407609 0.663715074344481 0.700497560449578 0.735817714176249 0.769346003776893 0.800792550572930 0.829917216722031 0.856537778826176 0.880535591658960 0.901858288833670 0.920519265282326 0.936593924749780 0.950212931632136 ] ;
params=gaussfitn(theta_i',x_b');
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
[D,A,mu,sig]=deal(params{:});
x = D + A*exp( -0.5 * (theta_i-mu).^2/sig );
plot(theta_i,x_b,'x',theta_i,x); legend('Data', 'Gauss Fit','Location','SouthEast')
  댓글 수: 1
Matt J
Matt J 2023년 10월 9일
편집: Matt J 2023년 10월 9일
With fminsearch:
theta_i = -29:1:30;
x_b = [3.85802467750551e-09 1.23456782463727e-07 9.37499560538235e-07 3.95060948021886e-06 1.20562544833058e-05 2.99995500044892e-05 6.48397188022232e-05 0.000126411762446210 0.000227786552702836 0.000385728056932932 0.000621145743629370 0.000959539347420657 0.00143143208410479 0.00207278707531322 0.00292540015345999 0.00403726036144925 0.00546286733815604 0.00726349240257385 0.00950736754606585 0.0122697837643895 0.0156330772872862 0.0196864794049803 0.0245258028990383 0.0302529357565231 0.0369751111287854 0.0448039216911671 0.0538540470230045 0.0642416647639122 0.0760825205564049 0.0894896386199658 0.104570664671209 0.121424846210700 0.140139672234976 0.160787215323602 0.183420243663010 0.208068198426751 0.234733162130625 0.263385974705427 0.293962684097702 0.326361544655273 0.360440796277300 0.396017466794855 0.432867435598924 0.470726974599819 0.509295940232559 0.548242725593590 0.587210994794329 0.625828114407609 0.663715074344481 0.700497560449578 0.735817714176249 0.769346003776893 0.800792550572930 0.829917216722031 0.856537778826176 0.880535591658960 0.901858288833670 0.920519265282326 0.936593924749780 0.950212931632136 ] ;
fun=@(p) mdlFcn(p,theta_i, x_b);
p=fminsearch(fun, [15,30]);
[~,DA,x]=fun(p);
plot(theta_i,x_b,'x',theta_i,x); legend('Data', 'Gauss Fit','Location','SouthEast')
function [cost,DA,x]=mdlFcn(p,theta, x_b)
g=exp( -0.5 * (theta(:)-p(1)).^2/p(2) );
G=[g.^0,g];
DA=G\x_b(:);
x=G*DA; %predicted curve
cost=norm(x-x_b(:));
end

댓글을 달려면 로그인하십시오.


Xabier Tamayo
Xabier Tamayo 2023년 10월 9일
The two ways that you have sent are very good and fast, but unfortunately they force me to use the fminsearch command. Any idea how to do it that way?
  댓글 수: 3
Fabio Freschi
Fabio Freschi 2023년 10월 9일
편집: Fabio Freschi 2023년 10월 9일
Nice trick to make fminsearch "converge"...
Torsten
Torsten 2023년 10월 9일
You should take @Fabio Freschi 's solution. It's more ... serious.

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Interpolation에 대해 자세히 알아보기

제품


릴리스

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by