이 질문을 팔로우합니다.
- 팔로우하는 게시물 피드에서 업데이트를 확인할 수 있습니다.
- 정보 수신 기본 설정에 따라 이메일을 받을 수 있습니다.
Shuffle matrix based on column elements
조회 수: 3 (최근 30일)
이전 댓글 표시
EK
2023년 10월 7일
Hi,
I have matrices like in the file attached below. The 4 columns log for stimuli representation in time. The rows are time and the columns are events. The first column logs stimuli id in time. (No stimulus =0, stimulus : 1 2 3 4 5 or 6) The second column logs the stimulus presentation time and its duration (0= No stimulus, 2=Stimulus); column 3 logs duration and ID of each trial. Trial 1 ==1; Trial trial 2 ==2; etc . I need to shuffle trials Ids (column3). Can anyone help with it?
댓글 수: 2
채택된 답변
Voss
2023년 10월 8일
Here's one way:
data = readmatrix('logfile_example-30-09-23.xlsx')
data = 1820×4
0 1 1 1
0 1 1 2
0 1 1 3
0 1 1 4
0 1 1 5
0 1 1 6
0 1 1 7
0 1 1 8
0 1 1 9
0 1 1 10
[trial_idx,trial_id] = findgroups(data(:,3));
n_trials = numel(trial_id);
order = randperm(n_trials)
order = 1×10
4 9 3 2 1 6 10 8 7 5
result = [];
for ii = 1:n_trials
result = [result; data(trial_idx == order(ii),:)];
end
disp(result);
0 1 4 547
0 1 4 548
0 1 4 549
0 1 4 550
0 1 4 551
0 1 4 552
0 1 4 553
0 1 4 554
0 1 4 555
0 1 4 556
0 1 4 557
0 1 4 558
0 1 4 559
0 1 4 560
0 1 4 561
0 1 4 562
0 1 4 563
0 1 4 564
0 1 4 565
0 1 4 566
0 1 4 567
0 1 4 568
0 1 4 569
0 1 4 570
0 1 4 571
0 1 4 572
0 1 4 573
0 1 4 574
0 1 4 575
0 1 4 576
0 1 4 577
0 1 4 578
0 1 4 579
0 1 4 580
0 1 4 581
0 1 4 582
0 1 4 583
0 1 4 584
0 1 4 585
0 1 4 586
0 1 4 587
0 1 4 588
0 1 4 589
0 1 4 590
0 1 4 591
0 1 4 592
0 1 4 593
0 1 4 594
0 1 4 595
0 1 4 596
0 1 4 597
0 1 4 598
0 1 4 599
0 1 4 600
0 1 4 601
0 1 4 602
0 1 4 603
0 1 4 604
0 1 4 605
0 1 4 606
0 1 4 607
0 1 4 608
0 1 4 609
0 1 4 610
0 1 4 611
0 1 4 612
0 1 4 613
0 1 4 614
0 1 4 615
0 1 4 616
2 2 4 617
2 2 4 618
2 2 4 619
2 2 4 620
2 2 4 621
2 2 4 622
2 2 4 623
2 2 4 624
2 2 4 625
2 2 4 626
2 2 4 627
2 2 4 628
2 2 4 629
2 2 4 630
2 2 4 631
2 2 4 632
2 2 4 633
2 2 4 634
2 2 4 635
2 2 4 636
2 2 4 637
2 2 4 638
2 2 4 639
2 2 4 640
2 2 4 641
2 2 4 642
2 2 4 643
2 2 4 644
2 2 4 645
2 2 4 646
2 2 4 647
2 2 4 648
2 2 4 649
2 2 4 650
2 2 4 651
2 2 4 652
2 2 4 653
2 2 4 654
2 2 4 655
2 2 4 656
2 2 4 657
2 2 4 658
0 3 4 659
0 3 4 660
0 3 4 661
0 3 4 662
0 3 4 663
0 3 4 664
0 3 4 665
0 3 4 666
0 3 4 667
0 3 4 668
0 3 4 669
0 3 4 670
0 3 4 671
0 3 4 672
0 3 4 673
0 3 4 674
0 3 4 675
0 3 4 676
0 3 4 677
0 3 4 678
0 3 4 679
0 3 4 680
0 3 4 681
0 3 4 682
0 3 4 683
0 3 4 684
0 3 4 685
0 3 4 686
0 3 4 687
0 3 4 688
0 3 4 689
0 3 4 690
0 3 4 691
0 3 4 692
0 3 4 693
0 3 4 694
0 3 4 695
0 3 4 696
0 3 4 697
0 3 4 698
0 3 4 699
0 3 4 700
0 3 4 701
0 3 4 702
0 3 4 703
0 3 4 704
0 3 4 705
0 3 4 706
0 3 4 707
0 3 4 708
0 3 4 709
0 3 4 710
0 3 4 711
0 3 4 712
0 3 4 713
0 3 4 714
0 3 4 715
0 3 4 716
0 3 4 717
0 3 4 718
0 3 4 719
0 3 4 720
0 3 4 721
0 3 4 722
0 3 4 723
0 3 4 724
0 3 4 725
0 3 4 726
0 3 4 727
0 3 4 728
0 1 9 1457
0 1 9 1458
0 1 9 1459
0 1 9 1460
0 1 9 1461
0 1 9 1462
0 1 9 1463
0 1 9 1464
0 1 9 1465
0 1 9 1466
0 1 9 1467
0 1 9 1468
0 1 9 1469
0 1 9 1470
0 1 9 1471
0 1 9 1472
0 1 9 1473
0 1 9 1474
0 1 9 1475
0 1 9 1476
0 1 9 1477
0 1 9 1478
0 1 9 1479
0 1 9 1480
0 1 9 1481
0 1 9 1482
0 1 9 1483
0 1 9 1484
0 1 9 1485
0 1 9 1486
0 1 9 1487
0 1 9 1488
0 1 9 1489
0 1 9 1490
0 1 9 1491
0 1 9 1492
0 1 9 1493
0 1 9 1494
0 1 9 1495
0 1 9 1496
0 1 9 1497
0 1 9 1498
0 1 9 1499
0 1 9 1500
0 1 9 1501
0 1 9 1502
0 1 9 1503
0 1 9 1504
0 1 9 1505
0 1 9 1506
0 1 9 1507
0 1 9 1508
0 1 9 1509
0 1 9 1510
0 1 9 1511
0 1 9 1512
0 1 9 1513
0 1 9 1514
0 1 9 1515
0 1 9 1516
0 1 9 1517
0 1 9 1518
0 1 9 1519
0 1 9 1520
0 1 9 1521
0 1 9 1522
0 1 9 1523
0 1 9 1524
0 1 9 1525
0 1 9 1526
2 2 9 1527
2 2 9 1528
2 2 9 1529
2 2 9 1530
2 2 9 1531
2 2 9 1532
2 2 9 1533
2 2 9 1534
2 2 9 1535
2 2 9 1536
2 2 9 1537
2 2 9 1538
2 2 9 1539
2 2 9 1540
2 2 9 1541
2 2 9 1542
2 2 9 1543
2 2 9 1544
2 2 9 1545
2 2 9 1546
2 2 9 1547
2 2 9 1548
2 2 9 1549
2 2 9 1550
2 2 9 1551
2 2 9 1552
2 2 9 1553
2 2 9 1554
2 2 9 1555
2 2 9 1556
2 2 9 1557
2 2 9 1558
2 2 9 1559
2 2 9 1560
2 2 9 1561
2 2 9 1562
2 2 9 1563
2 2 9 1564
2 2 9 1565
2 2 9 1566
2 2 9 1567
2 2 9 1568
0 3 9 1569
0 3 9 1570
0 3 9 1571
0 3 9 1572
0 3 9 1573
0 3 9 1574
0 3 9 1575
0 3 9 1576
0 3 9 1577
0 3 9 1578
0 3 9 1579
0 3 9 1580
0 3 9 1581
0 3 9 1582
0 3 9 1583
0 3 9 1584
0 3 9 1585
0 3 9 1586
0 3 9 1587
0 3 9 1588
0 3 9 1589
0 3 9 1590
0 3 9 1591
0 3 9 1592
0 3 9 1593
0 3 9 1594
0 3 9 1595
0 3 9 1596
0 3 9 1597
0 3 9 1598
0 3 9 1599
0 3 9 1600
0 3 9 1601
0 3 9 1602
0 3 9 1603
0 3 9 1604
0 3 9 1605
0 3 9 1606
0 3 9 1607
0 3 9 1608
0 3 9 1609
0 3 9 1610
0 3 9 1611
0 3 9 1612
0 3 9 1613
0 3 9 1614
0 3 9 1615
0 3 9 1616
0 3 9 1617
0 3 9 1618
0 3 9 1619
0 3 9 1620
0 3 9 1621
0 3 9 1622
0 3 9 1623
0 3 9 1624
0 3 9 1625
0 3 9 1626
0 3 9 1627
0 3 9 1628
0 3 9 1629
0 3 9 1630
0 3 9 1631
0 3 9 1632
0 3 9 1633
0 3 9 1634
0 3 9 1635
0 3 9 1636
0 3 9 1637
0 3 9 1638
0 1 3 365
0 1 3 366
0 1 3 367
0 1 3 368
0 1 3 369
0 1 3 370
0 1 3 371
0 1 3 372
0 1 3 373
0 1 3 374
0 1 3 375
0 1 3 376
0 1 3 377
0 1 3 378
0 1 3 379
0 1 3 380
0 1 3 381
0 1 3 382
0 1 3 383
0 1 3 384
0 1 3 385
0 1 3 386
0 1 3 387
0 1 3 388
0 1 3 389
0 1 3 390
0 1 3 391
0 1 3 392
0 1 3 393
0 1 3 394
0 1 3 395
0 1 3 396
0 1 3 397
0 1 3 398
0 1 3 399
0 1 3 400
0 1 3 401
0 1 3 402
0 1 3 403
0 1 3 404
0 1 3 405
0 1 3 406
0 1 3 407
0 1 3 408
0 1 3 409
0 1 3 410
0 1 3 411
0 1 3 412
0 1 3 413
0 1 3 414
0 1 3 415
0 1 3 416
0 1 3 417
0 1 3 418
0 1 3 419
0 1 3 420
0 1 3 421
0 1 3 422
0 1 3 423
0 1 3 424
0 1 3 425
0 1 3 426
0 1 3 427
0 1 3 428
0 1 3 429
0 1 3 430
0 1 3 431
0 1 3 432
0 1 3 433
0 1 3 434
1 2 3 435
1 2 3 436
1 2 3 437
1 2 3 438
1 2 3 439
1 2 3 440
1 2 3 441
1 2 3 442
1 2 3 443
1 2 3 444
1 2 3 445
1 2 3 446
1 2 3 447
1 2 3 448
1 2 3 449
1 2 3 450
1 2 3 451
1 2 3 452
1 2 3 453
1 2 3 454
1 2 3 455
1 2 3 456
1 2 3 457
1 2 3 458
1 2 3 459
1 2 3 460
1 2 3 461
1 2 3 462
1 2 3 463
1 2 3 464
1 2 3 465
1 2 3 466
1 2 3 467
1 2 3 468
1 2 3 469
1 2 3 470
1 2 3 471
1 2 3 472
1 2 3 473
1 2 3 474
1 2 3 475
1 2 3 476
0 3 3 477
0 3 3 478
0 3 3 479
0 3 3 480
0 3 3 481
0 3 3 482
0 3 3 483
0 3 3 484
0 3 3 485
0 3 3 486
0 3 3 487
0 3 3 488
0 3 3 489
0 3 3 490
0 3 3 491
0 3 3 492
0 3 3 493
0 3 3 494
0 3 3 495
0 3 3 496
0 3 3 497
0 3 3 498
0 3 3 499
0 3 3 500
0 3 3 501
0 3 3 502
0 3 3 503
0 3 3 504
0 3 3 505
0 3 3 506
0 3 3 507
0 3 3 508
0 3 3 509
0 3 3 510
0 3 3 511
0 3 3 512
0 3 3 513
0 3 3 514
0 3 3 515
0 3 3 516
0 3 3 517
0 3 3 518
0 3 3 519
0 3 3 520
0 3 3 521
0 3 3 522
0 3 3 523
0 3 3 524
0 3 3 525
0 3 3 526
0 3 3 527
0 3 3 528
0 3 3 529
0 3 3 530
0 3 3 531
0 3 3 532
0 3 3 533
0 3 3 534
0 3 3 535
0 3 3 536
0 3 3 537
0 3 3 538
0 3 3 539
0 3 3 540
0 3 3 541
0 3 3 542
0 3 3 543
0 3 3 544
0 3 3 545
0 3 3 546
0 1 2 183
0 1 2 184
0 1 2 185
0 1 2 186
0 1 2 187
0 1 2 188
0 1 2 189
0 1 2 190
0 1 2 191
0 1 2 192
0 1 2 193
0 1 2 194
0 1 2 195
0 1 2 196
0 1 2 197
0 1 2 198
0 1 2 199
0 1 2 200
0 1 2 201
0 1 2 202
0 1 2 203
0 1 2 204
0 1 2 205
0 1 2 206
0 1 2 207
0 1 2 208
0 1 2 209
0 1 2 210
0 1 2 211
0 1 2 212
0 1 2 213
0 1 2 214
0 1 2 215
0 1 2 216
0 1 2 217
0 1 2 218
0 1 2 219
0 1 2 220
0 1 2 221
0 1 2 222
0 1 2 223
0 1 2 224
0 1 2 225
0 1 2 226
0 1 2 227
0 1 2 228
0 1 2 229
0 1 2 230
0 1 2 231
0 1 2 232
0 1 2 233
0 1 2 234
0 1 2 235
0 1 2 236
0 1 2 237
0 1 2 238
0 1 2 239
0 1 2 240
0 1 2 241
0 1 2 242
0 1 2 243
0 1 2 244
0 1 2 245
0 1 2 246
0 1 2 247
0 1 2 248
0 1 2 249
0 1 2 250
0 1 2 251
0 1 2 252
1 2 2 253
1 2 2 254
1 2 2 255
1 2 2 256
1 2 2 257
1 2 2 258
1 2 2 259
1 2 2 260
1 2 2 261
1 2 2 262
1 2 2 263
1 2 2 264
1 2 2 265
1 2 2 266
1 2 2 267
1 2 2 268
1 2 2 269
1 2 2 270
1 2 2 271
1 2 2 272
1 2 2 273
1 2 2 274
1 2 2 275
1 2 2 276
1 2 2 277
1 2 2 278
1 2 2 279
1 2 2 280
1 2 2 281
1 2 2 282
1 2 2 283
1 2 2 284
1 2 2 285
1 2 2 286
1 2 2 287
1 2 2 288
1 2 2 289
1 2 2 290
1 2 2 291
1 2 2 292
1 2 2 293
1 2 2 294
0 3 2 295
0 3 2 296
0 3 2 297
0 3 2 298
0 3 2 299
0 3 2 300
0 3 2 301
0 3 2 302
0 3 2 303
0 3 2 304
0 3 2 305
0 3 2 306
0 3 2 307
0 3 2 308
0 3 2 309
0 3 2 310
0 3 2 311
0 3 2 312
0 3 2 313
0 3 2 314
0 3 2 315
0 3 2 316
0 3 2 317
0 3 2 318
0 3 2 319
0 3 2 320
0 3 2 321
0 3 2 322
0 3 2 323
0 3 2 324
0 3 2 325
0 3 2 326
0 3 2 327
0 3 2 328
0 3 2 329
0 3 2 330
0 3 2 331
0 3 2 332
0 3 2 333
0 3 2 334
0 3 2 335
0 3 2 336
0 3 2 337
0 3 2 338
0 3 2 339
0 3 2 340
0 3 2 341
0 3 2 342
0 3 2 343
0 3 2 344
0 3 2 345
0 3 2 346
0 3 2 347
0 3 2 348
0 3 2 349
0 3 2 350
0 3 2 351
0 3 2 352
0 3 2 353
0 3 2 354
0 3 2 355
0 3 2 356
0 3 2 357
0 3 2 358
0 3 2 359
0 3 2 360
0 3 2 361
0 3 2 362
0 3 2 363
0 3 2 364
0 1 1 1
0 1 1 2
0 1 1 3
0 1 1 4
0 1 1 5
0 1 1 6
0 1 1 7
0 1 1 8
0 1 1 9
0 1 1 10
0 1 1 11
0 1 1 12
0 1 1 13
0 1 1 14
0 1 1 15
0 1 1 16
0 1 1 17
0 1 1 18
0 1 1 19
0 1 1 20
0 1 1 21
0 1 1 22
0 1 1 23
0 1 1 24
0 1 1 25
0 1 1 26
0 1 1 27
0 1 1 28
0 1 1 29
0 1 1 30
0 1 1 31
0 1 1 32
0 1 1 33
0 1 1 34
0 1 1 35
0 1 1 36
0 1 1 37
0 1 1 38
0 1 1 39
0 1 1 40
0 1 1 41
0 1 1 42
0 1 1 43
0 1 1 44
0 1 1 45
0 1 1 46
0 1 1 47
0 1 1 48
0 1 1 49
0 1 1 50
0 1 1 51
0 1 1 52
0 1 1 53
0 1 1 54
0 1 1 55
0 1 1 56
0 1 1 57
0 1 1 58
0 1 1 59
0 1 1 60
0 1 1 61
0 1 1 62
0 1 1 63
0 1 1 64
0 1 1 65
0 1 1 66
0 1 1 67
0 1 1 68
0 1 1 69
0 1 1 70
2 2 1 71
2 2 1 72
2 2 1 73
2 2 1 74
2 2 1 75
2 2 1 76
2 2 1 77
2 2 1 78
2 2 1 79
2 2 1 80
2 2 1 81
2 2 1 82
2 2 1 83
2 2 1 84
2 2 1 85
2 2 1 86
2 2 1 87
2 2 1 88
2 2 1 89
2 2 1 90
2 2 1 91
2 2 1 92
2 2 1 93
2 2 1 94
2 2 1 95
2 2 1 96
2 2 1 97
2 2 1 98
2 2 1 99
2 2 1 100
2 2 1 101
2 2 1 102
2 2 1 103
2 2 1 104
2 2 1 105
2 2 1 106
2 2 1 107
2 2 1 108
2 2 1 109
2 2 1 110
2 2 1 111
2 2 1 112
0 3 1 113
0 3 1 114
0 3 1 115
0 3 1 116
0 3 1 117
0 3 1 118
0 3 1 119
0 3 1 120
0 3 1 121
0 3 1 122
0 3 1 123
0 3 1 124
0 3 1 125
0 3 1 126
0 3 1 127
0 3 1 128
0 3 1 129
0 3 1 130
0 3 1 131
0 3 1 132
0 3 1 133
0 3 1 134
0 3 1 135
0 3 1 136
0 3 1 137
0 3 1 138
0 3 1 139
0 3 1 140
0 3 1 141
0 3 1 142
0 3 1 143
0 3 1 144
0 3 1 145
0 3 1 146
0 3 1 147
0 3 1 148
0 3 1 149
0 3 1 150
0 3 1 151
0 3 1 152
0 3 1 153
0 3 1 154
0 3 1 155
0 3 1 156
0 3 1 157
0 3 1 158
0 3 1 159
0 3 1 160
0 3 1 161
0 3 1 162
0 3 1 163
0 3 1 164
0 3 1 165
0 3 1 166
0 3 1 167
0 3 1 168
0 3 1 169
0 3 1 170
0 3 1 171
0 3 1 172
0 3 1 173
0 3 1 174
0 3 1 175
0 3 1 176
0 3 1 177
0 3 1 178
0 3 1 179
0 3 1 180
0 3 1 181
0 3 1 182
0 1 6 911
0 1 6 912
0 1 6 913
0 1 6 914
0 1 6 915
0 1 6 916
0 1 6 917
0 1 6 918
0 1 6 919
0 1 6 920
0 1 6 921
0 1 6 922
0 1 6 923
0 1 6 924
0 1 6 925
0 1 6 926
0 1 6 927
0 1 6 928
0 1 6 929
0 1 6 930
0 1 6 931
0 1 6 932
0 1 6 933
0 1 6 934
0 1 6 935
0 1 6 936
0 1 6 937
0 1 6 938
0 1 6 939
0 1 6 940
0 1 6 941
0 1 6 942
0 1 6 943
0 1 6 944
0 1 6 945
0 1 6 946
0 1 6 947
0 1 6 948
0 1 6 949
0 1 6 950
0 1 6 951
0 1 6 952
0 1 6 953
0 1 6 954
0 1 6 955
0 1 6 956
0 1 6 957
0 1 6 958
0 1 6 959
0 1 6 960
0 1 6 961
0 1 6 962
0 1 6 963
0 1 6 964
0 1 6 965
0 1 6 966
0 1 6 967
0 1 6 968
0 1 6 969
0 1 6 970
0 1 6 971
0 1 6 972
0 1 6 973
0 1 6 974
0 1 6 975
0 1 6 976
0 1 6 977
0 1 6 978
0 1 6 979
0 1 6 980
2 2 6 981
2 2 6 982
2 2 6 983
2 2 6 984
2 2 6 985
2 2 6 986
2 2 6 987
2 2 6 988
2 2 6 989
2 2 6 990
2 2 6 991
2 2 6 992
2 2 6 993
2 2 6 994
2 2 6 995
2 2 6 996
2 2 6 997
2 2 6 998
2 2 6 999
2 2 6 1000
2 2 6 1001
2 2 6 1002
2 2 6 1003
2 2 6 1004
2 2 6 1005
2 2 6 1006
2 2 6 1007
2 2 6 1008
2 2 6 1009
2 2 6 1010
2 2 6 1011
2 2 6 1012
2 2 6 1013
2 2 6 1014
2 2 6 1015
2 2 6 1016
2 2 6 1017
2 2 6 1018
2 2 6 1019
2 2 6 1020
2 2 6 1021
2 2 6 1022
0 3 6 1023
0 3 6 1024
0 3 6 1025
0 3 6 1026
0 3 6 1027
0 3 6 1028
0 3 6 1029
0 3 6 1030
0 3 6 1031
0 3 6 1032
0 3 6 1033
0 3 6 1034
0 3 6 1035
0 3 6 1036
0 3 6 1037
0 3 6 1038
0 3 6 1039
0 3 6 1040
0 3 6 1041
0 3 6 1042
0 3 6 1043
0 3 6 1044
0 3 6 1045
0 3 6 1046
0 3 6 1047
0 3 6 1048
0 3 6 1049
0 3 6 1050
0 3 6 1051
0 3 6 1052
0 3 6 1053
0 3 6 1054
0 3 6 1055
0 3 6 1056
0 3 6 1057
0 3 6 1058
0 3 6 1059
0 3 6 1060
0 3 6 1061
0 3 6 1062
0 3 6 1063
0 3 6 1064
0 3 6 1065
0 3 6 1066
0 3 6 1067
0 3 6 1068
0 3 6 1069
0 3 6 1070
0 3 6 1071
0 3 6 1072
0 3 6 1073
0 3 6 1074
0 3 6 1075
0 3 6 1076
0 3 6 1077
0 3 6 1078
0 3 6 1079
0 3 6 1080
0 3 6 1081
0 3 6 1082
0 3 6 1083
0 3 6 1084
0 3 6 1085
0 3 6 1086
0 3 6 1087
0 3 6 1088
0 3 6 1089
0 3 6 1090
0 3 6 1091
0 3 6 1092
0 1 10 1639
0 1 10 1640
0 1 10 1641
0 1 10 1642
0 1 10 1643
0 1 10 1644
0 1 10 1645
0 1 10 1646
0 1 10 1647
0 1 10 1648
0 1 10 1649
0 1 10 1650
0 1 10 1651
0 1 10 1652
0 1 10 1653
0 1 10 1654
0 1 10 1655
0 1 10 1656
0 1 10 1657
0 1 10 1658
0 1 10 1659
0 1 10 1660
0 1 10 1661
0 1 10 1662
0 1 10 1663
0 1 10 1664
0 1 10 1665
0 1 10 1666
0 1 10 1667
0 1 10 1668
0 1 10 1669
0 1 10 1670
0 1 10 1671
0 1 10 1672
0 1 10 1673
0 1 10 1674
0 1 10 1675
0 1 10 1676
0 1 10 1677
0 1 10 1678
0 1 10 1679
0 1 10 1680
0 1 10 1681
0 1 10 1682
0 1 10 1683
0 1 10 1684
0 1 10 1685
0 1 10 1686
0 1 10 1687
0 1 10 1688
0 1 10 1689
0 1 10 1690
0 1 10 1691
0 1 10 1692
0 1 10 1693
0 1 10 1694
0 1 10 1695
0 1 10 1696
0 1 10 1697
0 1 10 1698
0 1 10 1699
0 1 10 1700
0 1 10 1701
0 1 10 1702
0 1 10 1703
0 1 10 1704
0 1 10 1705
0 1 10 1706
0 1 10 1707
0 1 10 1708
1 2 10 1709
1 2 10 1710
1 2 10 1711
1 2 10 1712
1 2 10 1713
1 2 10 1714
1 2 10 1715
1 2 10 1716
1 2 10 1717
1 2 10 1718
1 2 10 1719
1 2 10 1720
1 2 10 1721
1 2 10 1722
1 2 10 1723
1 2 10 1724
1 2 10 1725
1 2 10 1726
1 2 10 1727
1 2 10 1728
1 2 10 1729
1 2 10 1730
1 2 10 1731
1 2 10 1732
1 2 10 1733
1 2 10 1734
1 2 10 1735
1 2 10 1736
1 2 10 1737
1 2 10 1738
1 2 10 1739
1 2 10 1740
1 2 10 1741
1 2 10 1742
1 2 10 1743
1 2 10 1744
1 2 10 1745
1 2 10 1746
1 2 10 1747
1 2 10 1748
1 2 10 1749
1 2 10 1750
0 3 10 1751
0 3 10 1752
0 3 10 1753
0 3 10 1754
0 3 10 1755
0 3 10 1756
0 3 10 1757
0 3 10 1758
0 3 10 1759
0 3 10 1760
0 3 10 1761
0 3 10 1762
0 3 10 1763
0 3 10 1764
0 3 10 1765
0 3 10 1766
0 3 10 1767
0 3 10 1768
0 3 10 1769
0 3 10 1770
0 3...
추가 답변 (1개)
Walter Roberson
2023년 10월 7일
sortrows specifying column 3 to sort on. The resulting matrix will group together all of the entries with the same trial-ID
댓글 수: 5
the cyclist
2023년 10월 7일
편집: the cyclist
2023년 10월 7일
@EK wrote "shuffle", not "sort", so I suspected that they might mean randomization, within each trial. But they may have meant sorting by trial.
Bruno Luong
2023년 10월 8일
"shuffle matrix by trials Ids (column3)."
And in which way column3 matters in randomizing?
EK
2023년 10월 8일
column 3 logs Trials Ids. Trial 1==1, Trial 2==2, etc. I need to shaffle the trials.
Dyuman Joshi
2023년 10월 8일
@EK, Bruno's question was that in what way randomizing column 3 matters? What is the idea/logic behind randomizing?
참고 항목
카테고리
Help Center 및 File Exchange에서 Entering Commands에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!오류 발생
페이지가 변경되었기 때문에 동작을 완료할 수 없습니다. 업데이트된 상태를 보려면 페이지를 다시 불러오십시오.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
아시아 태평양
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)