Is there a parallel version of splitapply()?

조회 수: 6 (최근 30일)
Simon
Simon 2023년 9월 15일
댓글: Edric Ellis 2023년 9월 20일
Group-based computation is naturally sutiable for parallel computation. I wonder why Matlab has not yet a built-in parfor-splitapply? In Github, there is a repository called Matlab-FunUtils, which has cmap.m. It's like a parfor version of arrayfun. I couldn't find a similar function for splitapply. I have been trying to modify Matlab's splitapply, but the codes are very difficult to understand. Any suggesstoins? Should I write from scratch?

채택된 답변

Edric Ellis
Edric Ellis 2023년 9월 15일
tall arrays support parallel execution of splitapply. Would that work for your case?
  댓글 수: 6
Simon
Simon 2023년 9월 20일
@Edric Ellis When my codes have nested splitapply, the tall approach fails. The situation occurs when I have 2-layer nested groupping structure, and splitapply() is used to process groups in each layer. For example, like in patients.mat, suppose there is a new grouping variable, 'BloodType', within each Male/Female group in Gender variable. tall will not allow splitapply to work in both level of groups. I guess this is the intrinsic limitation of parallel toolbox? Similarly, it does not allow nested parfor-loop.
Edric Ellis
Edric Ellis 2023년 9월 20일
Yes, typically this sort of algorithm cannot work in a nested way. It isn't quite the same restriction as nested parfor (in fact, with thread-pools, you can get genuine 2-level parallelism with parfor, but there's a separate restriction that you need to "hide" the inner parfor inside a function).
As to your original question - does it work to make the groups based on the combinations of variables, as per the 2nd syntax of findgroups ? I.e. something like:
load patients
G = findgroups(Smoker, Age >= 40)
G = 100×1
3 2 1 2 2 2 3 2 1 1
This divides the data into 4 groups for each combination of Smoker and Age >= 40.

댓글을 달려면 로그인하십시오.

추가 답변 (1개)

Bruno Luong
Bruno Luong 2023년 9월 15일
To me there are 2 reasons:
  • Not everyone have parallel toolbox
  • The user function can be multi-threaded and already use efficiently the CPU cores, add parallel on top will then likely reduce the performance. The parallel computation should never be applied automatically anywhere. It should be judged case by case.
  댓글 수: 2
Simon
Simon 2023년 9월 15일
I do computations with tall, tall tables. parfor saves huge amount of runtime for me compared with for-looping through rows serially. Now I am doing group-based computations and the number of groups I have is large. For that, I feel that splitapply is a little sluggish.
Simon
Simon 2023년 9월 16일
@Bruno Luong "Not everyone have parallel toolbox"
I know that. I was very hesitant to use parallel toolbox. I thought it would be extremely difficult to adopt parallelization. But I dived in giving it a try. It turned out Matlab has done a wonderful job making a daunting task beginner-easy. I google how parallelization could be done in Python, and again what I find is choices of possible useful packages, new sets of documentations to digest, ... and etc.
IMHO, if one has chosen Matlab, he should seriously consider adopting parallel toolbox. It's easy to use, and combined with group-processing functions and functional programming, to shift the whole coding game to a different paradigm, saving both coding and run time.

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Parallel for-Loops (parfor)에 대해 자세히 알아보기

제품


릴리스

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by