How to smooth the matlab plot to get the desired plot shape?
조회 수: 3 (최근 30일)
이전 댓글 표시
Is there a way to change figure one to figure 2 (like the lines I draw in red and black color) without changing the values of y1 and y2? Please help.
Figure 1:

Figure 2:

Below is my code
clear all; close all; clc;
x= [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1];
y1 = [0 0.0833 0.1583 0.2167 0.1500 0.3250 0.3750 0.3000 0.5917 0.3750 0.5000];
y2= [ 0 0 0.0167 0.0750 0.1000 0.0917 0.1167 0.1583 0.1083 0.2000 0.1833];
figure
plot (x,y1,'o')
hold on
plot (x,y2,'o')
Xi = 0:0.005:1;
Yi = pchip(x,y1,Xi);
Yi_spline = spline(x,y1,Xi);
h(1) = plot(Xi,Yi,'-','color',lines(1));
h(2) = plot(Xi, Yi_spline, '--', 'color', lines(1));
Yj = pchip(x,y2,Xi);
Yj_spline = spline(x, y2, Xi);
h(3) = plot(Xi,Yj,'-','color',[0.85, 0.325, 0.098]);
h(4) = plot(Xi,Yj_spline,'--','color',[0.85, 0.325, 0.098]);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "location", "NW")
댓글 수: 0
채택된 답변
Angelo Yeo
2023년 7월 24일
I'm not sure about your intention. But the easiest way to smooth signals is moving average. See the doc below for more information about moving average.
https://www.mathworks.com/help/releases/R2023a/matlab/ref/movmean.html
x= [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1];
y1 = [0 0.0833 0.1583 0.2167 0.1500 0.3250 0.3750 0.3000 0.5917 0.3750 0.5000];
y2= [ 0 0 0.0167 0.0750 0.1000 0.0917 0.1167 0.1583 0.1083 0.2000 0.1833];
figure
plot (x,y1,'o')
hold on
plot (x,y2,'o')
dt = 0.005;
Xi = 0:dt:1;
Yi = pchip(x,y1,Xi);
Yi_spline = spline(x,y1,Xi);
h(1) = plot(Xi,Yi,'-','color',lines(1));
h(2) = plot(Xi, Yi_spline, '--', 'color', lines(1));
Yj = pchip(x,y2,Xi);
Yj_spline = spline(x, y2, Xi);
h(3) = plot(Xi,Yj,'-','color',[0.85, 0.325, 0.098]);
h(4) = plot(Xi,Yj_spline,'--','color',[0.85, 0.325, 0.098]);
%% Smoothing
Yi_smooth = movmean(Yi_spline, 100);
Yj_smooth = movmean(Yj_spline, 100);
h(5) = plot(Xi, Yi_smooth, 'r','linewidth',2);
h(6) = plot(Xi, Yj_smooth, 'k','linewidth',2);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "Yi smoothed", "Yj smoothed", "location", "NW")
댓글 수: 4
Angelo Yeo
2023년 7월 24일
Anyways, if you insist that the resultant curve should pass (0, 0), you can think of something like curve fitting for a quadratic polynomial without a bias term.
clear; close all; clc;
x= [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1];
y1 = [0 0.0833 0.1583 0.2167 0.1500 0.3250 0.3750 0.3000 0.5917 0.3750 0.5000];
y2= [ 0 0 0.0167 0.0750 0.1000 0.0917 0.1167 0.1583 0.1083 0.2000 0.1833];
figure
plot (x,y1,'o')
hold on
plot (x,y2,'o')
dt = 0.005;
Xi = 0:dt:1;
Yi = pchip(x,y1,Xi);
Yi_spline = spline(x,y1,Xi);
h(1) = plot(Xi,Yi,'-','color',lines(1));
h(2) = plot(Xi, Yi_spline, '--', 'color', lines(1));
Yj = pchip(x,y2,Xi);
Yj_spline = spline(x, y2, Xi);
h(3) = plot(Xi,Yj,'-','color',[0.85, 0.325, 0.098]);
h(4) = plot(Xi,Yj_spline,'--','color',[0.85, 0.325, 0.098]);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "location", "NW")
%% Fitting a quadratic curve
% Set up fittype and options.
[xData, yData] = prepareCurveData( Xi, Yi_spline );
ft = fittype( 'p1*x^2+p2*x', 'independent', 'x');
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.StartPoint = [0, 0];
Yi_fit = fit( xData, yData, ft, opts );
[xData, yData] = prepareCurveData( Xi, Yj_spline );
ft = fittype( 'p1*x^2+p2*x', 'independent', 'x');
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.StartPoint = [0, 0];
Yj_fit = fit( xData, yData, ft, opts );
h(5) = plot(Xi, Yi_fit.p1*Xi.^2 + Yi_fit.p2*Xi,'r','linewidth', 2);
h(6) = plot(Xi, Yj_fit.p1*Xi.^2 + Yj_fit.p2*Xi,'k','linewidth', 2);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "Yi smoothed", "Yj smoothed", "location", "NW")
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Interpolation에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!