# Multioutput Regression models in MATLAB

조회 수: 22 (최근 30일)
Alejandro Plata . 2023년 6월 5일
편집: Ive J . 2023년 6월 8일
I am working on a project where I need to predict multiple response variables for a given data set likely using random forests or boositng. Are there any functions I could use that might provide what I am looking for. Basically, what I mean is:
data = (2-D matrix of regressors)
regression model = regression_function(data,response variables)

댓글을 달려면 로그인하십시오.

### 채택된 답변

Ive J 2023년 6월 6일
I'm not aware of such a function in MATLAB, but you can loop over your target/response variables, and each time fit a new model. Something like this:
models = cell(numel(responseVars), 1);
for k = 1:numel(models)
models{k} = fitrensemble(data(:, [features, responseVars(k)], responseVars(k)); % data table contains all features + outcomes
end
##### 댓글 수: 7이전 댓글 6개 표시이전 댓글 6개 숨기기
Ive J 2023년 6월 8일
편집: Ive J 님. 2023년 6월 8일
Yes, that's correct and I didn't mean fitcecoc is multivariate. For multivariate SVM one could check sklearn. But for this specific problem of OP, I meant something like this by aggregating different responses to see how one label vs others could differ compared to separate SVMs:
y1 = ["y1-1", "y1-2", "y1-3"];
y2 = ["y2-1", "y2-2"];
y_multi = y1' + "_" + y2;
y_multi = categorical(y_multi(:))
y_multi = 6×1 categorical array
y1-1_y2-1 y1-2_y2-1 y1-3_y2-1 y1-1_y2-2 y1-2_y2-2 y1-3_y2-2

댓글을 달려면 로그인하십시오.

### 추가 답변 (1개)

the cyclist 2023년 6월 6일
The only MATLAB function (that I know of) that can handle multiple response variables is mvregress. Take a look at my answer here for examples with some common design matrices. There are of course examples in the documentation page I linked, as well.

댓글을 달려면 로그인하십시오.

### 카테고리

Help CenterFile Exchange에서 Support Vector Machine Regression에 대해 자세히 알아보기

R2023a

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!