Predicting the value at y(t=8) using my model

조회 수: 3 (최근 30일)
Matt Boyles
Matt Boyles 2023년 5월 29일
댓글: Matt Boyles 2023년 5월 31일
Hi,
I am completeing some LLS analysis and need to predict the value of my model after 8 seconds.
% Problem 3
clc
close all
% Load Data
t = LLS_Data3(:,1);
y = LLS_Data3(:,2);
% Plot the data
figure;
plot(t,y,'.')
% Apply LLS
AL = [t,ones(size(x))]; %
thetaL = inv(AL.'*AL)*(AL.')*y;
yML = thetaL(1)*t + thetaL(2); % Based on equation
% Plot Error over time
figure(1)
errorL = y - yML;
plot(t,errorL, 'x')
xlabel('Time')
ylabel('Error')
hold on
yline(0, 'k')
hold off
This is my current code but am unsure how to use the model to predict my Y value (yML) at t = 8 seconds. The given data set runs for 10 seconds and there are currently 7 values given throughout the 10 second period.
Any help would be appreciated,
Thank you
  댓글 수: 2
Sam Chak
Sam Chak 2023년 5월 29일
편집: Sam Chak 2023년 5월 29일
@Matt Boyles: The given data set runs for 10 seconds and there are currently 7 values given throughout the 10 second period.
Are you suggesting that there are only 7 data points over the entire 10-second period?
Are you looking to predict the output at exactly t = 8 seconds using the LLS model?
Matt Boyles
Matt Boyles 2023년 5월 29일
Yes exactly, thanks

댓글을 달려면 로그인하십시오.

답변 (2개)

Torsten
Torsten 2023년 5월 29일
이동: Torsten 2023년 5월 29일
thetaL(1)*8 + thetaL(2)
  댓글 수: 2
Matt Boyles
Matt Boyles 2023년 5월 29일
Thankyou,
What about for a more complex equation like
yM7 = theta7(1)*t.^7 + theta7(2)*t.^6 + theta7(3)*t.^5 + theta7(4)*t.^4 + theta7(5)*t.^3 + theta7(6)*t.^2 + theta7(7)*t + theta7(8); %
Is it the same premis that I would just multiply each t value by 8? it doesnt seem correct to me.
Thanks for your help!!
Torsten
Torsten 2023년 5월 29일
If you have a function yM7(t) and you want to find its value at t=8, how do you do that ? You insert 8 for t, don't you ?

댓글을 달려면 로그인하십시오.


Sam Chak
Sam Chak 2023년 5월 30일
You can try something like the following to estimate the output. However, there is no guarantee that the estimation at sec is accurate, as shown in the following example.
subplot(2, 1, 1)
nPts1 = 1001; % number of points
x1 = linspace(0, 10, nPts1);
y1 = sin(4*pi/10*x1) + sin(6*pi/10*x1);
plot(x1, y1, 'linewidth', 1.5), grid on
xlabel('x')
subplot(2, 1, 2)
nPts2 = 7; % number of points
x2 = linspace(0, 10, nPts2);
y2 = sin(4*pi/10*x2) + sin(6*pi/10*x2);
% plot(x2, y2, 'rp')
xlabel('x')
f = fit(x2', y2', 'poly6')
f =
Linear model Poly6: f(x) = p1*x^6 + p2*x^5 + p3*x^4 + p4*x^3 + p5*x^2 + p6*x + p7 Coefficients: p1 = -5.586e-17 p2 = 0.005051 p3 = -0.1263 p4 = 1.099 p5 = -3.858 p6 = 4.443 p7 = 2.993e-13
plot(f, x2, y2), grid on
actual_t8 = sin(4*pi/10*8) + sin(6*pi/10*8)
actual_t8 = 7.7716e-16
estim_t8 = f(8)
estim_t8 = -0.3861

카테고리

Help CenterFile Exchange에서 Numerical Integration and Differential Equations에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by