Why contourf and fcontour gives different images for the same matlab code?

조회 수: 1 (최근 30일)
I have code for fcountour as;
syms x y
m =1;
sgm =1;
wo = 0.01;
lambda=532 *10^-9;
k=2*pi/lambda;
Omega = .2;
z=30;
Pho=0.003;
for u=1:length(z)
I=0;
Gamma = ((1i.*k)./(2.*z(u))) + (1./(Pho(u).^2)) + (1./(wo.^2));
Gamma_star = subs(Gamma, 1i, -1i);
alpha = (Gamma_star) - 1./((Gamma.*Pho(u).^4));
C = (1./(4.*(lambda.^2).*(z(u).^4))).*((pi.^2)./(alpha.*Gamma)).*(1./(2.*1i.*sqrt(Gamma)).^m);
fx = ((Omega.^2)./(4.*Gamma)) + ((1i.*k.*x.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*x.^2)./(4.*z(u).^2.*Gamma));
fy = ((Omega.^2)./(4.*Gamma)) + ((1i.*k.*y.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*y.^2)./(4.*z(u).^2.*Gamma));
gx = ((Omega.^2)./(4.*Gamma)) - ((1i.*k.*x.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*x.^2)./(4.*z(u).^2.*Gamma));
gy = ((Omega.^2)./(4.*Gamma)) - ((1i.*k.*y.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*y.^2)./(4.*z(u).^2.*Gamma));
Bx_p = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Bx_n = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
By_p = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
By_n = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
Kx_p = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Kx_n = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
Ky_p = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Ky_n = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
X = 0;
for l = 0:m
L = (((1i).*sgm).^(m-l)).*nchoosek(m,l);
sum_j = 0;
for j = 0:m
J= (((-1i).*sgm).^(m-j)).*nchoosek(m,j);
sum1 = 0.0;
for p = 0:1/2:l/2
faktor1_P = (((-1).^p).*factorial(l))./(gamma(p+1).*factorial(l-(2.*p))).*(((2.*1i)./(sqrt(Gamma))).^(l-(2.*p))).*exp(fx).*exp(fy);
for s1 = 0:l-2*p
faktor1_s1 = nchoosek((l-(2.*p)),s1).*((1./(Pho(u).^2)).^s1).*((((1i.*k.*x)./(2.*z(u)))+(Omega./2)).^(l-(2.*p)-s1)).*(1./(((2.*1i.*sqrt(alpha))).^(j+s1)));
for q = 0:1/2:(m-l)/2
faktor1_Q = (((-1).^q).*factorial(m-l))./(gamma(q+1).*factorial(m-l-(2.*q))).*(((2.*1i)./(sqrt(Gamma))).^(m-l-(2.*q)));
sum_inner_1 = 0;
for s2 = 0:m-l-2*q
E1 = (exp(((Bx_p).^2)./alpha).*hermiteH(j+s1,((1i.*Bx_p)./(sqrt(alpha)))).*exp(((By_p).^2)./alpha).*hermiteH(m-j+s2,((1i.*By_p)./(sqrt(alpha))))) - (exp(((Bx_n).^2)./alpha).*hermiteH(j+s1,((1i.*Bx_n)./(sqrt(alpha)))).*exp(((By_n).^2)./alpha).*hermiteH(m-j+s2,((1i.*By_n)./(sqrt(alpha)))));
sum_inner_1 = sum_inner_1 + nchoosek((m-l-(2.*q)),s2).*((1./(Pho(u).^2)).^s2).*((((1i.*k.*y)./(2.*z(u)))+(Omega./2)).^(m-l-(2.*q)-s2)).*(1./(((2.*1i.*sqrt(alpha))).^(m-j+s2))).*E1;
end
end
end
sum1 = sum1 + faktor1_P.*faktor1_s1.*faktor1_Q.*sum_inner_1;
end
sum_j= sum_j + J.*(sum1);
end
X = X + (L.*sum_j);
end
X = (C.*X);
I = I + abs(vpa(X)) ;
figure;
fcontour(real(I), [-1 1 -1 1]*1E-1, 'Fill','on', 'MeshDensity',150);
colormap('hot');
axis('equal');colorbar('vert');
end
Then i have contourf plot as;
figure;
m =1;
sgm =1;
wo = 0.1;
lambda=532 *10^-9;
k=2*pi/lambda;
Omega = .2;
z=30
z = 30
Pho=0.003
Pho = 0.0030
[x, y] = meshgrid(-1:0.06:1);
for u=1:length(z)
I=0;
Gamma = ((1i.*k)./(2.*z(u))) + (1./(Pho(u).^2)) + (1./(wo.^2));
Gamma_star = subs(Gamma, 1i, -1i);
alpha = (Gamma_star) - 1./((Gamma.*Pho(u).^4));
C = (1./(4.*(lambda.^2).*(z(u).^4))).*((pi.^2)./(alpha.*Gamma)).*(1./(2.*1i.*sqrt(Gamma)).^m);
fx = ((Omega.^2)./(4.*Gamma)) + ((1i.*k.*x.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*x.^2)./(4.*z(u).^2.*Gamma));
fy = ((Omega.^2)./(4.*Gamma)) + ((1i.*k.*y.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*y.^2)./(4.*z(u).^2.*Gamma));
gx = ((Omega.^2)./(4.*Gamma)) - ((1i.*k.*x.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*x.^2)./(4.*z(u).^2.*Gamma));
gy = ((Omega.^2)./(4.*Gamma)) - ((1i.*k.*y.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*y.^2)./(4.*z(u).^2.*Gamma));
Bx_p = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Bx_n = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
By_p = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
By_n = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
Kx_p = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Kx_n = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
Ky_p = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Ky_n = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
X = 0;
for l = 0:m
L = (((1i).*sgm).^(m-l)).*nchoosek(m,l);
sum_j = 0;
for j = 0:m
J= (((-1i).*sgm).^(m-j)).*nchoosek(m,j);
sum1 = 0.0;
for p = 0:1/2:l/2
faktor1_P = (((-1).^p).*factorial(l))./(gamma(p+1).*factorial(l-(2.*p))).*(((2.*1i)./(sqrt(Gamma))).^(l-(2.*p))).*exp(fx).*exp(fy);
for s1 = 0:l-2*p
faktor1_s1 = nchoosek((l-(2.*p)),s1).*((1./(Pho(u).^2)).^s1).*((((1i.*k.*x)./(2.*z(u)))+(Omega./2)).^(l-(2.*p)-s1)).*(1./(((2.*1i.*sqrt(alpha))).^(j+s1)));
for q = 0:1/2:(m-l)/2
faktor1_Q = (((-1).^q).*factorial(m-l))./(gamma(q+1).*factorial(m-l-(2.*q))).*(((2.*1i)./(sqrt(Gamma))).^(m-l-(2.*q)));
sum_inner_1 = 0;
for s2 = 0:m-l-2*q
E1 = (exp(((Bx_p).^2)./alpha).*hermiteH(j+s1,((1i.*Bx_p)./(sqrt(alpha)))).*exp(((By_p).^2)./alpha).*hermiteH(m-j+s2,((1i.*By_p)./(sqrt(alpha))))) - (exp(((Bx_n).^2)./alpha).*hermiteH(j+s1,((1i.*Bx_n)./(sqrt(alpha)))).*exp(((By_n).^2)./alpha).*hermiteH(m-j+s2,((1i.*By_n)./(sqrt(alpha)))));
sum_inner_1 = sum_inner_1 + nchoosek((m-l-(2.*q)),s2).*((1./(Pho(u).^2)).^s2).*((((1i.*k.*y)./(2.*z(u)))+(Omega./2)).^(m-l-(2.*q)-s2)).*(1./(((2.*1i.*sqrt(alpha))).^(m-j+s2))).*E1;
end
end
end
sum1 = sum1 + faktor1_P.*faktor1_s1.*faktor1_Q.*sum_inner_1;
end
sum_j= sum_j + J.*(sum1 );
end
X = X + (L.*sum_j);
end
X = (C.*X);
I = I + abs(vpa(X)) ;
contourf(x,y,real(abs(I))/max(real(abs(I(:)))))
colormap('hot');
colorbar('vert');
axis('equal')
end
According to me fcountour plot is correct, then what is wrong with countourf plot? Can anyone help me to fix the error in contourf plot?
  댓글 수: 1
VBBV
VBBV 2023년 5월 28일
편집: VBBV 2023년 5월 29일
What I got is plot with two extra lobes and the figure is not complete. I have done the contourf plot is to normalize my data. Why when I normalize the data, looks different?
The figures produced by both contourf & fcontour functions are same. If you look at fcontour the range limits
fcontour(real(I), [-1 1 -1 1]*1E-1, 'Fill','on', 'MeshDensity',150);
are [ -1 1 -1 1 ] multiplied by (1/10) i.e. 0.1 and fcontour doesnt normalize data when it plots. However, when you normalize the data ( as in case of contourf) it divides with maximum value from the computed vector. Also, the absoulute value was taken, this also means, the resultant value (which includes complex or imaginary values if any) is considered instead of actual value,

댓글을 달려면 로그인하십시오.

채택된 답변

VBBV
VBBV 2023년 5월 28일
If you change the meshgrid limits in the below line
[x, y] = meshgrid(-1/10:0.005:1/10);
and de-normalize the I variable in the contourf function , you will get similar figure as fcontour
contourf(x,y,real(I))
  댓글 수: 2
Athira T Das
Athira T Das 2023년 5월 28일
m =1;
sgm =1;
wo = 0.1;
lambda=532 *10^-9;
k=2*pi/lambda;
Omega = .2;
z=30
z = 30
Pho=0.003
Pho = 0.0030
[x, y] = meshgrid(-1/10:0.005:1/10);
for u=1:length(z)
I=0;
Gamma = ((1i.*k)./(2.*z(u))) + (1./(Pho(u).^2)) + (1./(wo.^2));
Gamma_star = subs(Gamma, 1i, -1i);
alpha = (Gamma_star) - 1./((Gamma.*Pho(u).^4));
C = (1./(4.*(lambda.^2).*(z(u).^4))).*((pi.^2)./(alpha.*Gamma)).*(1./(2.*1i.*sqrt(Gamma)).^m);
fx = ((Omega.^2)./(4.*Gamma)) + ((1i.*k.*x.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*x.^2)./(4.*z(u).^2.*Gamma));
fy = ((Omega.^2)./(4.*Gamma)) + ((1i.*k.*y.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*y.^2)./(4.*z(u).^2.*Gamma));
gx = ((Omega.^2)./(4.*Gamma)) - ((1i.*k.*x.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*x.^2)./(4.*z(u).^2.*Gamma));
gy = ((Omega.^2)./(4.*Gamma)) - ((1i.*k.*y.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*y.^2)./(4.*z(u).^2.*Gamma));
Bx_p = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Bx_n = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
By_p = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
By_n = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
Kx_p = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Kx_n = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
Ky_p = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Ky_n = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
X = 0;
for l = 0:m
L = (((1i).*sgm).^(m-l)).*nchoosek(m,l);
sum_j = 0;
for j = 0:m
J= (((-1i).*sgm).^(m-j)).*nchoosek(m,j);
sum1 = 0.0;
for p = 0:1/2:l/2
faktor1_P = (((-1).^p).*factorial(l))./(gamma(p+1).*factorial(l-(2.*p))).*(((2.*1i)./(sqrt(Gamma))).^(l-(2.*p))).*exp(fx).*exp(fy);
for s1 = 0:l-2*p
faktor1_s1 = nchoosek((l-(2.*p)),s1).*((1./(Pho(u).^2)).^s1).*((((1i.*k.*x)./(2.*z(u)))+(Omega./2)).^(l-(2.*p)-s1)).*(1./(((2.*1i.*sqrt(alpha))).^(j+s1)));
for q = 0:1/2:(m-l)/2
faktor1_Q = (((-1).^q).*factorial(m-l))./(gamma(q+1).*factorial(m-l-(2.*q))).*(((2.*1i)./(sqrt(Gamma))).^(m-l-(2.*q)));
sum_inner_1 = 0;
for s2 = 0:m-l-2*q
E1 = (exp(((Bx_p).^2)./alpha).*hermiteH(j+s1,((1i.*Bx_p)./(sqrt(alpha)))).*exp(((By_p).^2)./alpha).*hermiteH(m-j+s2,((1i.*By_p)./(sqrt(alpha))))) - (exp(((Bx_n).^2)./alpha).*hermiteH(j+s1,((1i.*Bx_n)./(sqrt(alpha)))).*exp(((By_n).^2)./alpha).*hermiteH(m-j+s2,((1i.*By_n)./(sqrt(alpha)))));
sum_inner_1 = sum_inner_1 + nchoosek((m-l-(2.*q)),s2).*((1./(Pho(u).^2)).^s2).*((((1i.*k.*y)./(2.*z(u)))+(Omega./2)).^(m-l-(2.*q)-s2)).*(1./(((2.*1i.*sqrt(alpha))).^(m-j+s2))).*E1;
end
end
end
sum1 = sum1 + faktor1_P.*faktor1_s1.*faktor1_Q.*sum_inner_1;
end
sum_j= sum_j + J.*(sum1 );
end
X = X + (L.*sum_j);
end
X = (C.*X);
I = I + abs(vpa(X)) ;
contourf(x,y,real(abs(I))/max(real(abs(I(:)))), 'EdgeColor','none')
colormap('hot');
colorbar('vert');
axis('equal')
end
What I got is plot with two extra lobes and the figure is not complete. I have done the contourf plot is to normalize my data. Why when I normalize the data, looks different?
VBBV
VBBV 2023년 5월 28일
m =1;
sgm =1;
% this parameter is also something different in both codes
wo = 0.01;
lambda=532 *10^-9;
k=2*pi/lambda;
Omega = .2;
z=30
z = 30
Pho=0.003
Pho = 0.0030
[x, y] = meshgrid(-1/10:0.005:1/10);
for u=1:length(z)
I=0;
Gamma = ((1i.*k)./(2.*z(u))) + (1./(Pho(u).^2)) + (1./(wo.^2));
Gamma_star = subs(Gamma, 1i, -1i);
alpha = (Gamma_star) - 1./((Gamma.*Pho(u).^4));
C = (1./(4.*(lambda.^2).*(z(u).^4))).*((pi.^2)./(alpha.*Gamma)).*(1./(2.*1i.*sqrt(Gamma)).^m);
fx = ((Omega.^2)./(4.*Gamma)) + ((1i.*k.*x.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*x.^2)./(4.*z(u).^2.*Gamma));
fy = ((Omega.^2)./(4.*Gamma)) + ((1i.*k.*y.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*y.^2)./(4.*z(u).^2.*Gamma));
gx = ((Omega.^2)./(4.*Gamma)) - ((1i.*k.*x.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*x.^2)./(4.*z(u).^2.*Gamma));
gy = ((Omega.^2)./(4.*Gamma)) - ((1i.*k.*y.*Omega)./(2.*z(u).*Gamma)) - ((k.^2.*y.^2)./(4.*z(u).^2.*Gamma));
Bx_p = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Bx_n = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
By_p = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
By_n = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) + (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
Kx_p = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Kx_n = ((-1i.*k.*x)./(2.*z(u))) + ((1i.*k.*x)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
Ky_p = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) + (Omega./2);
Ky_n = ((-1i.*k.*y)./(2.*z(u))) + ((1i.*k.*y)./(2.*z(u).*Gamma.*Pho(u).^2)) - (Omega)./(2.*Gamma.*Pho(u).^2) - (Omega./2);
X = 0;
for l = 0:m
L = (((1i).*sgm).^(m-l)).*nchoosek(m,l);
sum_j = 0;
for j = 0:m
J= (((-1i).*sgm).^(m-j)).*nchoosek(m,j);
sum1 = 0.0;
for p = 0:1/2:l/2
faktor1_P = (((-1).^p).*factorial(l))./(gamma(p+1).*factorial(l-(2.*p))).*(((2.*1i)./(sqrt(Gamma))).^(l-(2.*p))).*exp(fx).*exp(fy);
for s1 = 0:l-2*p
faktor1_s1 = nchoosek((l-(2.*p)),s1).*((1./(Pho(u).^2)).^s1).*((((1i.*k.*x)./(2.*z(u)))+(Omega./2)).^(l-(2.*p)-s1)).*(1./(((2.*1i.*sqrt(alpha))).^(j+s1)));
for q = 0:1/2:(m-l)/2
faktor1_Q = (((-1).^q).*factorial(m-l))./(gamma(q+1).*factorial(m-l-(2.*q))).*(((2.*1i)./(sqrt(Gamma))).^(m-l-(2.*q)));
sum_inner_1 = 0;
for s2 = 0:m-l-2*q
E1 = (exp(((Bx_p).^2)./alpha).*hermiteH(j+s1,((1i.*Bx_p)./(sqrt(alpha)))).*exp(((By_p).^2)./alpha).*hermiteH(m-j+s2,((1i.*By_p)./(sqrt(alpha))))) - (exp(((Bx_n).^2)./alpha).*hermiteH(j+s1,((1i.*Bx_n)./(sqrt(alpha)))).*exp(((By_n).^2)./alpha).*hermiteH(m-j+s2,((1i.*By_n)./(sqrt(alpha)))));
sum_inner_1 = sum_inner_1 + nchoosek((m-l-(2.*q)),s2).*((1./(Pho(u).^2)).^s2).*((((1i.*k.*y)./(2.*z(u)))+(Omega./2)).^(m-l-(2.*q)-s2)).*(1./(((2.*1i.*sqrt(alpha))).^(m-j+s2))).*E1;
end
end
end
sum1 = sum1 + faktor1_P.*faktor1_s1.*faktor1_Q.*sum_inner_1;
end
sum_j= sum_j + J.*(sum1 );
end
X = X + (L.*sum_j);
end
X = (C.*X);
I = I + abs(vpa(X)) ;
contourf(x,y,real((I)), 'EdgeColor','none')
colormap('hot');
colorbar('vert');
axis('equal')
end
In addition to x & y range limits in meshgrid and denormailized I variable, the value of parameter wo is used differently in contourf & fcontour functions , See the below line in both codes
% this value is 0.01 in fcontour and 0.1 in contourf function codes, why ?
wo = 0.01;

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Contour Plots에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by