liver tumor image segmentation

조회 수: 3 (최근 30일)
Verdes
Verdes 2023년 5월 20일
댓글: Yurii Volvenko 2024년 2월 27일
hi, I have a CT image 2D and the mask for it. I need to do a MATLAB code for U-NET that I can train for this images and also test images. Can you help me with some ideas? Thank you.
  댓글 수: 2
Image Analyst
Image Analyst 2023년 5월 20일
You're welcome. That was easy. Thanks for the announcement. Good luck with it.
To learn fundamental concepts, invest 2 hours of your time here:
Yurii Volvenko
Yurii Volvenko 2024년 2월 27일
Hi! I have the same task that you had. Did you find the answer to your question? I would really appreciate it if you would share it.

댓글을 달려면 로그인하십시오.

답변 (1개)

Coo Boo
Coo Boo 2023년 5월 20일
Hi
A sample code as a starting point for training and evaluating a U-Net model:
% Load CT images and their corresponding masks
ct_images = imageDatastore('path to CT images');
masks = imageDatastore('path to masks');
% Resize images and masks to the same size
target_size = [256, 256];
ct_images = augmentedImageDatastore(target_size, ct_images);
masks = augmentedImageDatastore(target_size, masks);
% Split data into training and validation sets
[train_images, val_images] = splitEachLabel(ct_images, 0.8);
[train_masks, val_masks] = splitEachLabel(masks, 0.8);
% Create U-Net model with 4 levels and 64 filters per layer
num_levels = 4;
num_filters = 64;
unet_layers = unetLayers([256, 256, 1], num_filters, 'NumLevels', num_levels);
% Specify training options
opts = trainingOptions('adam', ...
'InitialLearnRate', 1e-4, ...
'MiniBatchSize', 16, ...
'MaxEpochs', 50, ...
'ValidationData', {val_images, val_masks}, ...
'ValidationFrequency', 10, ...
'Plots', 'training-progress');
% Train the U-Net model
trained_unet = trainNetwork(train_images, train_masks, unet_layers, opts);
% Make predictions on test images
test_images = imageDatastore('path to test images');
test_images = augmentedImageDatastore(target_size, test_images);
test_masks = predict(trained_unet, test_images);
% Evaluate performance of U-Net model
metrics = evaluateSemanticSegmentation(test_masks, test_masks);

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by