Scaled function for optimization
조회 수: 4 (최근 30일)
이전 댓글 표시
clear
if true
% Unscaled formulation:
% min (x^3 - y)^2 - x
% subject to
% x^2 + 3150 - y <= 0
% -15 <= x <= 15
% -4000 <= y <= 4000
obj = @(x) (x(1)^3 - x(2))^2 - x(1);
nonlcon = @(x) deal(x(1)^2 + 3150 - x(2), []);
lb = [-15, -4000];
ub = [15, 4000];
% Solve the problem a few times
fprintf("Unscaled optimisation results:\n");
x_unscaled = zeros(5,2);
fval_unscaled = zeros(5,1);
for i = 1:5
options = optimoptions('ga','Display','none','ConstraintTolerance',1e-6,'PlotFcn', @gaplotbestf);
[x_unscaled(i,:), fval_unscaled(i)] = ga(obj, 2, [], [], [], [], lb, ub, nonlcon, options);
fprintf("Objective value: %0.3f, x = %0.3f, y = %0.3f\n",fval_unscaled(i), x_unscaled(i,1), x_unscaled(i,2));
end
end
% Scaled formulation:
% Substitute w = x/15 and z = y/4000
% and multiply the objective and constraints by reasonable factors
% (so that all of their terms are somewhere around the order of 1)
% to obtain...
% min 0.01*(((15*w)^3 - (4000*z))^2 - 15*w)
% subject to
% 0.001*((15*w)^2 + 3150 - (4000*z)) <= 0
% -1 <= w <= 1
% -1 <= z <= 1
if true
obj = @(x) 0.01*(((15*x(1))^3 - (4000*x(2)))^2 - (15*x(1)));
nonlcon = @(x) deal(0.001*((15*x(1))^2 + 3150 - (4000*x(2))), []);
lb = [-1, -1];
ub = [1, 1];
% Solve the problem a few times
fprintf("Scaled optimisation results:\n");
x_scaled = zeros(5,2);
fval_scaled = zeros(5,1);
for i = 1:5
options = optimoptions('ga','Display','none','ConstraintTolerance',1e-6,'PlotFcn', @gaplotbestf);
[x_scaled(i,:), fval_scaled(i)] = ga(obj, 2, [], [], [], [], lb, ub, nonlcon, options);
% Rescale for x and y afterwards
fval_scaled(i,1) = fval_scaled(i,1) * 100;
x_scaled(i,1) = x_scaled(i,1) * 15;
x_scaled(i,2) = x_scaled(i,2) * 4000;
fprintf("Objective value: %0.3f, x = %0.3f, y = %0.3f\n",fval_scaled(i), x_scaled(i,1), x_scaled(i,2));
end
end
From the run, I got this solution. But, I do not understand the coding, especially the 0.01 and 0.001 which multiply in the scaled objective function and constraint. How does it come from?
댓글 수: 0
답변 (1개)
Torsten
2023년 5월 16일
이동: Torsten
2023년 5월 16일
From the run, I got this solution. But, I do not understand the coding, especially the 0.01 and 0.001 which multiply in the scaled objective function and constraint. How does it come from?
Did you read the program documentation ?
% Substitute w = x/15 and z = y/4000
% and multiply the objective and constraints by reasonable factors
% (so that all of their terms are somewhere around the order of 1)
댓글 수: 0
참고 항목
카테고리
Help Center 및 File Exchange에서 Genetic Algorithm에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!