Problems with control of PID parameters using reinforcement learning

조회 수: 4 (최근 30일)
jh j
jh j 2023년 5월 15일
답변: Divyanshu 2024년 12월 26일
Hello,I am currently learning about reinforcement learning. I want to use reinforcement learning to generate my PID controller parameters. But when I build the simulink model and start training, my reward value keeps going to 0 and when I look at the actions generated by the model in simulink it keeps going to null.I have no idea why this is happening and I am looking for some help.Thank you in advance for your assistance.
clc;clear;close all;
open_system('BLDCRL')
Unable to find system or file 'BLDCRL'.
obsInfo = rlNumericSpec([3 1],...
'LowerLimit',[-inf -inf -inf ]',...
'UpperLimit',[ inf inf inf]');
numObservations = obsInfo.Dimension(1);
actInfo = rlNumericSpec([3 1]);
numActions = actInfo.Dimension(1);
env = rlSimulinkEnv('BLDCRL','BLDCRL/RL Agent',...
obsInfo,actInfo);
env.ResetFcn = @localResetFcn;
Ts = 5;
Tf = 100;
rng(0)
statePath = [
featureInputLayer(numObservations,'Normalization','none','Name','State')
fullyConnectedLayer(500,'Name','CriticStateFC1')
reluLayer('Name','CriticRelu1')
fullyConnectedLayer(500,'Name','CriticStateFC2')];
actionPath = [
featureInputLayer(numActions,'Normalization','none','Name','Action')
fullyConnectedLayer(500,'Name','ActionFC1')];
commonPath = [
additionLayer(2,'Name','add')
reluLayer('Name','CriticCommonRelu')
fullyConnectedLayer(1,'Name','CriticOutput')];
criticNetwork = layerGraph();
criticNetwork = addLayers(criticNetwork,statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'ActionFC1','add/in2');
% figure
% plot(criticNetwork)
criticOpts = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1);
% critic = rlQValueFunction(criticNetwork,...
% obsInfo,actInfo, ...
% "ActionInputNames",{'Action'},"ObservationInputNames",{'State'},"UseDevice","gpu");
critic = rlRepresentation(criticNetwork,obsInfo,actInfo,'Observation',{'State'},'Action',{'Action'},criticOpts);
actorNetwork = [
featureInputLayer(numObservations,'Normalization','none','Name','State')
fullyConnectedLayer(500,'Name','ActorFC1')
reluLayer('Name','ActorRelu1')
fullyConnectedLayer(500,'Name','ActorFC2')
reluLayer('Name','ActorRelu2')
fullyConnectedLayer(numActions,'Name','Action')
];
actorOptions = rlRepresentationOptions('LearnRate',1e-05,'GradientThreshold',1);
actor = rlRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'State'},'Action',{'Action'},actorOptions);
% actor = rlContinuousDeterministicActor(actorNetwork,obsInfo,actInfo, ...
% "ObservationInputNames",{'State'},"UseDevice","gpu");
% act = getAction(actor, ...
% {rand(obsInfo.Dimension)});
% act{1}
agentOpts = rlDDPGAgentOptions(...
'SampleTime',Ts,...
'TargetSmoothFactor',1e-3,...
'DiscountFactor',1.0, ...
'MiniBatchSize',64, ...
'ExperienceBufferLength',1e6);
agentOpts.NoiseOptions.Variance = 0.3;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-5;
agent = rlDDPGAgent(actor,critic,agentOpts);
maxepisodes = 500;
maxsteps = ceil(Tf/Ts);
trainOpts = rlTrainingOptions(...
'MaxEpisodes',maxepisodes, ...
'MaxStepsPerEpisode',maxsteps, ...
'ScoreAveragingWindowLength',5, ...
'Verbose',false, ...
'Plots','training-progress',...
'StopTrainingCriteria','AverageReward',...
'StopTrainingValue',998);
trainingStats = train(agent,env,trainOpts);

답변 (1개)

Divyanshu
Divyanshu 2024년 12월 26일
Hello @jh j,
If you are following some official example of Reinforcement Learning Toolbox, then ensure that the Reinforcement Learning Toolbox is installed properly on your system along with MATLAB. Because the error indicates that the model file 'BLDCRL' is missing.
However, if this is a custom code then ensure that the model 'BLDCRL' is present on MATLAB path.
Additionally, you can take reference of the following example documentation to get more details.

카테고리

Help CenterFile Exchange에서 Reinforcement Learning에 대해 자세히 알아보기

제품


릴리스

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by