A faster and more compact way to create a list of distances among all the pairs of points

조회 수: 2 (최근 30일)
Hi, could you suggest a faster and more compact way to create a list of distances among all the pairs of points?
My attempt here below:
% Input (x and y coordinates of 6 points)
x = [1 2 2 3 4 5];
y = [1 2 3 7 2 5];
% Plot just to see the 6 points
plot(x,y,'o','MarkerFaceColor','b','markersize',15)
xlim([0 10])
ylim([0 10])
% Calculate the distances among each pair of points
Z = squareform(pdist([x' y']));
% Create a list that includes 3 elements: i-point ID, j-point ID, distance(i,j)
k = 1;
for i = 1 : length(x)-1
for j = i+1 : length(x)
list(k,:) = [i j Z(i,j)];
k = k + 1;
end
end
list,
list = 15×3
1.0000 2.0000 1.4142 1.0000 3.0000 2.2361 1.0000 4.0000 6.3246 1.0000 5.0000 3.1623 1.0000 6.0000 5.6569 2.0000 3.0000 1.0000 2.0000 4.0000 5.0990 2.0000 5.0000 2.0000 2.0000 6.0000 4.2426 3.0000 4.0000 4.1231

채택된 답변

chicken vector
chicken vector 2023년 4월 29일
편집: chicken vector 2023년 4월 29일
N = 1e4;
x = randi(10,N,1);
y = randi(10,N,1);
tic
xIdx = repmat(1 : length(x), length(x), 1);
yIdx = xIdx';
vectorIdx = (1 : size(xIdx, 1))' > (1 : size(xIdx, 2));
xy = [x(:), y(:)];
dist = pdist2(xy, xy);
distPdist = dist(vectorIdx);
list = [xIdx(vectorIdx) , ...
yIdx(vectorIdx) , ...
distPdist]
list = 49995000×3
1.0000 2.0000 5.3852 1.0000 3.0000 6.7082 1.0000 4.0000 3.0000 1.0000 5.0000 5.8310 1.0000 6.0000 8.6023 1.0000 7.0000 2.2361 1.0000 8.0000 8.5440 1.0000 9.0000 8.5440 1.0000 10.0000 5.0000 1.0000 11.0000 10.8167
toc
Elapsed time is 2.501384 seconds.

추가 답변 (2개)

Image Analyst
Image Analyst 2023년 4월 28일
Try pdist2
% Input (x and y coordinates of 6 points)
x = [1 2 2 3 4 5];
y = [1 2 3 7 2 5];
xy = [x(:), y(:)]
xy = 6×2
1 1 2 2 2 3 3 7 4 2 5 5
% Get distances between every (x,y) point and every other (x,y) point:
distances = pdist2(xy, xy)
distances = 6×6
0 1.4142 2.2361 6.3246 3.1623 5.6569 1.4142 0 1.0000 5.0990 2.0000 4.2426 2.2361 1.0000 0 4.1231 2.2361 3.6056 6.3246 5.0990 4.1231 0 5.0990 2.8284 3.1623 2.0000 2.2361 5.0990 0 3.1623 5.6569 4.2426 3.6056 2.8284 3.1623 0
  댓글 수: 12
Image Analyst
Image Analyst 2023년 4월 28일
No, I must be thinking of the old way. Anyway, you can post a "final" fixed up program for a new answer and he can accept that.
Sim
Sim 2023년 4월 29일
Thanks a lot both @Image Analyst and @chicken vector!!
If @chicken vector you want to re-post an Answer as @Image Analyst suggested I will accept it :-) Meanwhile, obviously, I will upvote both :-)

댓글을 달려면 로그인하십시오.


chicken vector
chicken vector 2023년 4월 28일
편집: chicken vector 2023년 4월 28일
You can build the indeces without for loop:
N = 5e2;
x = randi(10,1,N);
y = randi(10,1,N);
% Loop method:
tic;
k = 1;
for i = 1 : length(x)-1
for j = i+1 : length(x)
loopList(k,:) = [i j];
k = k + 1;
end
end
loopTime = toc;
% Vectorised method:
tic;
xIdx = repmat(1 : length(x), length(x), 1);
yIdx = xIdx';
vectorList = [xIdx((1 : size(xIdx, 1))' > (1 : size(xIdx, 2))) , ...
yIdx((1 : size(yIdx, 1))' > (1 : size(yIdx', 2)))];
vectorTime = toc;
fprintf("Time with for loop: %.3f seconds\n", loopTime)
Time with for loop: 0.988 seconds
fprintf("Time with vectorisation: %.3f seconds\n", vectorTime)
Time with vectorisation: 0.009 seconds
You can also increase the speed for computing the distance with the following:
% Squareform method:
tic
squareFormZ = squareform(pdist([x' y']));
squareFormTime = toc;
% Vectorised method:
tic;
X = repmat(x, length(x), 1);
Y = repmat(y, length(y), 1);
deltaX = tril(x' - X, -1);
deltaY = tril(y' - Y, -1);
vectorZ = sqrt(deltaX(:).^2 + deltaY(:).^2);
vectorTime = toc;
fprintf("Time with squareform: %.3f seconds\n", squareFormTime)
Time with squareform: 0.072 seconds
fprintf("Time with vectorisation: %.3f seconds\n", vectorTime)
Time with vectorisation: 0.009 seconds
You can build your original list with the following wrapped up:
% Data:
x = [1 2 2 3 4 5];
y = [1 2 3 7 2 5];
% Initialise indeces:
xIdx = repmat(1 : length(x), length(x), 1);
yIdx = xIdx';
% Initialise elements distribution:
X = repmat(x, length(x), 1);
Y = repmat(y, length(y), 1);
% Compute distances:
deltaX = tril(x' - X, -1);
deltaY = tril(y' - Y, -1);
% Re-arrange to vector:
deltaX = deltaX((1 : size(deltaX, 1))' > (1 : size(deltaX, 2)));
deltaY = deltaY((1 : size(deltaY, 1))' > (1 : size(deltaY, 2)));
% Build lsit:
list = [xIdx((1 : size(xIdx, 1))' > (1 : size(xIdx, 2))) , ...
yIdx((1 : size(yIdx, 1))' > (1 : size(yIdx', 2))) , ...
sqrt(deltaX.^2 + deltaY.^2)]
list = 15×3
1.0000 2.0000 1.4142 1.0000 3.0000 2.2361 1.0000 4.0000 6.3246 1.0000 5.0000 3.1623 1.0000 6.0000 5.6569 2.0000 3.0000 1.0000 2.0000 4.0000 5.0990 2.0000 5.0000 2.0000 2.0000 6.0000 4.2426 3.0000 4.0000 4.1231

카테고리

Help CenterFile Exchange에서 Matrix Indexing에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by