Triangular-weighted moving average filter

조회 수: 14 (최근 30일)
Mateusz Rzeszowski
Mateusz Rzeszowski 2023년 4월 13일
답변: Meg Noah 2025년 8월 9일
Hi,
I`m looking for function or source code for Triangular-weighted moving average filter to apply it and make my data processing.
High-frequency noise shall be removed from the measured signals using a triangular-weighted moving average with a smoothing width of 100 ms.
can someone share the experience ?

답변 (2개)

Image Analyst
Image Analyst 2023년 4월 13일
Use conv and set up your kernel to be a triangle shape.
  댓글 수: 1
Dan
Dan 2025년 7월 30일
Try:
tri_weights = triang('sz');
filtered_data = conv('data', tri_weights, "same") / sum(tri_weights);

댓글을 달려면 로그인하십시오.


Meg Noah
Meg Noah 2025년 8월 9일
Here's an example of high frequency noise being removed with a triangular filter, if by width you mean the base of the triangle:
signal = repmat([zeros(1,500) ones(1,2000) zeros(1,500)],1,10);
time_ms = 0.1*(1:numel(signal));
dt_ms = time_ms(2)-time_ms(1);
filter = triang(round(100/dt_ms))/sum(triang(round(100/dt_ms)));
fprintf(1,'Sum of energy conserving filter should be 1 = %f\n', sum(filter(:)));
Sum of energy conserving filter should be 1 = 1.000000
fprintf(1,'Filter width = %d samples = %f ms',numel(filter),numel(filter)*dt_ms);
Filter width = 1000 samples = 100.000000 ms
smooth_signal = conv(signal,filter,'same');
plot(time_ms,signal,'b','DisplayName','Signal');
hold on
plot(time_ms,smooth_signal,'r','DisplayName','Smoothed Signal');
legend('location','best');
xlabel('Time [ms]');
ylabel('Signal');
You can also apply the convolution theorem to do it with Fourier transforms.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by