필터 지우기
필터 지우기

Magnetized Hybrid Nanofluid Flow , MATLAB Code has some problem. Please help to Rectify. Highly Appreciated

조회 수: 37 (최근 30일)
function MHN
% Initialization of paramters
beta=1.5;
lambda=1.5;
wt=2.5;
wb=1.5;
ks1=0.5;
ks2=0.1;
a=0.5;
epsilon=0.1;
delta1=0.1;
rhos1=0.2;
rhos2=0.3;
omegas1=0.2;
omegas2=0.1;
phi1=0.5;
phi2=0.5;
rhocps1=0.3;
rhocps2=0.1;
chi=0.1;
omegaf=0.05;
rhof=997.1;
kf=0.613;
rhocpf=4179;
% Constants involve in Equation # 14
CC1=((1-phi1)^(2.5)).*((1-phi2)^(2.5)); % Hybrid to Nanofluid Constant
E1=(1/CC1); % Mau_Hnf/Mau_f (Equation # 14)
CC2=(1-phi2).*((1-phi1).*rhof + rhos1.*phi1) + rhos2.*phi2;% Hybrid to Nanofluid Constant
E2=CC2.*(1/rhof); % rho_Hnf/rho_f (Equation # 14)
DD1=omegas2.*(1+2.*phi2)+2.*omegaf.*(1-phi2); % Hybrid Constant
DD2=omegas2.*(1-phi2)+omegaf.*(2+phi2); % Hybrid
CC3=DD1/DD2; % Hybrid Constant
DD3=omegas1.*(1+2.*phi1)+2.*omegaf.*(1-phi1); % Nanofluid Constant
DD4=omegas1.*(1-phi1)+omegaf.*(2+phi1); % Nanofluid Constant
CC4=DD3/DD4; % Nanofluid Constant
E3=CC3.*CC4; % omega_Hnf/omega_f (Equation # 14)
EE1=2.*kf+ks1-2.*(kf-ks1).*phi1; % Nanofluid Constant
EE2=2.*kf+ks1+(kf-ks1).*phi1; % Nanofluid Constant
CC5=EE1/EE2; % Nanofluid Constant
EE3=2.*kf+ks2-2.*(kf-ks2).*phi2; % Hybrid Constant
EE4=2.*kf+ks2+(kf-ks2).*phi2; % Hybrid Constant
CC6=EE3/EE4; % Hybrid Constant
E4=CC5.*CC6; % k_Hnf/k_f (Equation # 14)
FF1=(1-phi2)*((1-phi1)*rhocpf+phi1*rhocps1)+phi2*rhocps2; % Hybrid to Nanofluid Constant
FF2=1/rhocpf; % Hybrid to Nanofluid Constant
E5=FF1.*FF2; % rhocp_Hnf/rhocp_f (Equation # 14)
% Initial Condition Input
sol = bvpinit(linspace(0,5,10), [1 0 0 0 0 0 0]);
% solution in structure form
sol1 = bvp4c(@bvpexam2, @bcexam2, sol);
x1 = sol1.x;
y1 = sol1.y;
plot(x1, y1(2,:));
figure (1)
hold on
value = deval(sol1,0);
vpa(value,9);
function res=bcexam2(y0, yinf)
res=[y0(1);y0(2)-1;y0(4)-1-delta1*y0(5);y0(6)-1; yinf(2);yinf(4);yinf(6)]
end
function dydx = bvpexam2(t,y)
yy1=(E3/E1)*beta*y(2)-(E2/E1)*y(1)*y(3)+(E2/E1)*y(2)^(2)
yy2 = -(chi/E4(1+epsilon*y(4)))*(E5*y(1)*y(5)+wt*y(5)*y(7)+wb*y(5)^(2)+lambda(E1*y(3)^(2)+E3*beta*y(2)^(2))+epsilon*E4*y(5)^(2))
yy3 = -a*(y(1)*y(7))-(wt/wb)*yy2
dydx= [y(2);y(3);yy1;y(5);yy2;y(7);yy3]
end
Error in MATLAB
Array indices must be positive integers or logical values.
Error in MHN/bvpexam2 (line 62)
yy2 =
-(chi/E4(1+epsilon*y(4)))*(E5*y(1)*y(5)+wt*y(5)*y(7)+wb*y(5)*y(5)+lambda(E1*y(3)*y(3)+E3*beta*y(2)*y(2))+epsilon*E4*y(5)*y(5))
Error in bvparguments (line 105)
testODE = ode(x1,y1,odeExtras{:});
Error in bvp4c (line 128)
bvparguments(solver_name,ode,bc,solinit,options,varargin);
Error in MHN (line 48)
sol1 = bvp4c(@bvpexam2, @bcexam2, sol);
  댓글 수: 4
Shahid Hasnain
Shahid Hasnain 2023년 8월 11일
I am uncertain about the specific issue you are referring to. Furthermore, these modifications involve not only the system of equations but also the boundary conditions and associated parameters. I trust that you will gain clarity regarding the specific inquiry you wish to make.

댓글을 달려면 로그인하십시오.

채택된 답변

Torsten
Torsten 2023년 3월 27일
MHN
function MHN
% Initialization of paramters
beta=1.5;
lambda=1.5;
wt=2.5;
wb=1.5;
ks1=0.5;
ks2=0.1;
a=0.5;
epsilon=0.1;
delta1=0.1;
rhos1=0.2;
rhos2=0.3;
omegas1=0.2;
omegas2=0.1;
phi1=0.5;
phi2=0.5;
rhocps1=0.3;
rhocps2=0.1;
chi=0.1;
omegaf=0.05;
rhof=997.1;
kf=0.613;
rhocpf=4179;
% Constants involve in Equation # 14
CC1=((1-phi1)^(2.5)).*((1-phi2)^(2.5)); % Hybrid to Nanofluid Constant
E1=(1/CC1); % Mau_Hnf/Mau_f (Equation # 14)
CC2=(1-phi2).*((1-phi1).*rhof + rhos1.*phi1) + rhos2.*phi2;% Hybrid to Nanofluid Constant
E2=CC2.*(1/rhof); % rho_Hnf/rho_f (Equation # 14)
DD1=omegas2.*(1+2.*phi2)+2.*omegaf.*(1-phi2); % Hybrid Constant
DD2=omegas2.*(1-phi2)+omegaf.*(2+phi2); % Hybrid
CC3=DD1/DD2; % Hybrid Constant
DD3=omegas1.*(1+2.*phi1)+2.*omegaf.*(1-phi1); % Nanofluid Constant
DD4=omegas1.*(1-phi1)+omegaf.*(2+phi1); % Nanofluid Constant
CC4=DD3/DD4; % Nanofluid Constant
E3=CC3.*CC4; % omega_Hnf/omega_f (Equation # 14)
EE1=2.*kf+ks1-2.*(kf-ks1).*phi1; % Nanofluid Constant
EE2=2.*kf+ks1+(kf-ks1).*phi1; % Nanofluid Constant
CC5=EE1/EE2; % Nanofluid Constant
EE3=2.*kf+ks2-2.*(kf-ks2).*phi2; % Hybrid Constant
EE4=2.*kf+ks2+(kf-ks2).*phi2; % Hybrid Constant
CC6=EE3/EE4; % Hybrid Constant
E4=CC5.*CC6; % k_Hnf/k_f (Equation # 14)
FF1=(1-phi2)*((1-phi1)*rhocpf+phi1*rhocps1)+phi2*rhocps2; % Hybrid to Nanofluid Constant
FF2=1/rhocpf; % Hybrid to Nanofluid Constant
E5=FF1.*FF2; % rhocp_Hnf/rhocp_f (Equation # 14)
% Initial Condition Input
sol = bvpinit(linspace(0,5,10), [1 0 0 0 0 0 0]);
% solution in structure form
sol1 = bvp4c(@bvpexam2, @bcexam2, sol);
x1 = sol1.x;
y1 = sol1.y;
plot(x1, y1(2,:));
figure (1)
hold on
value = deval(sol1,0);
vpa(value,9);
function res=bcexam2(y0, yinf)
res=[y0(1);y0(2)-1;y0(4)-1-delta1*y0(5);y0(6)-1; yinf(2);yinf(4);yinf(6)];
end
function dydx = bvpexam2(t,y)
yy1=(E3/E1)*beta*y(2)-(E2/E1)*y(1)*y(3)+(E2/E1)*y(2)^(2);
yy2 = -(chi/E4*(1+epsilon*y(4)))*(E5*y(1)*y(5)+wt*y(5)*y(7)+wb*y(5)^(2)+lambda*(E1*y(3)^(2)+E3*beta*y(2)^(2))+epsilon*E4*y(5)^(2));
yy3 = -a*(y(1)*y(7))-(wt/wb)*yy2;
dydx= [y(2);y(3);yy1;y(5);yy2;y(7);yy3] ;
end
end
  댓글 수: 7
Shahid Hasnain
Shahid Hasnain 2023년 7월 23일
function MHN
% Initialization of paramters
Megnatic_C=[0.5 0.9 1.3 1.5 1.9]
for i=1:length(Megnatic_C)
beta=Megnatic_C(i);
lambda=1.5;
wt=2.5;
wb=1.5;
ks1=0.5;
ks2=0.1;
a=0.5;
epsilon=0.1;
delta1=0.1;
rhos1=0.2;
rhos2=0.3;
omegas1=0.2;
omegas2=0.1;
phi1=0.5;
phi2=0.5;
rhocps1=0.3;
rhocps2=0.1;
chi=0.1;
omegaf=0.05;
rhof=997.1;
kf=0.613;
rhocpf=4179;
% Constants involve in Equation # 14
CC1=((1-phi1)^(2.5)).*((1-phi2)^(2.5)); % Hybrid to Nanofluid Constant
E1=(1/CC1); % Mau_Hnf/Mau_f (Equation # 14)
CC2=(1-phi2).*((1-phi1).*rhof + rhos1.*phi1) + rhos2.*phi2;% Hybrid to Nanofluid Constant
E2=CC2.*(1/rhof); % rho_Hnf/rho_f (Equation # 14)
DD1=omegas2.*(1+2.*phi2)+2.*omegaf.*(1-phi2); % Hybrid Constant
DD2=omegas2.*(1-phi2)+omegaf.*(2+phi2); % Hybrid
CC3=DD1/DD2; % Hybrid Constant
DD3=omegas1.*(1+2.*phi1)+2.*omegaf.*(1-phi1); % Nanofluid Constant
DD4=omegas1.*(1-phi1)+omegaf.*(2+phi1); % Nanofluid Constant
CC4=DD3/DD4; % Nanofluid Constant
E3=CC3.*CC4; % omega_Hnf/omega_f (Equation # 14)
EE1=2.*kf+ks1-2.*(kf-ks1).*phi1; % Nanofluid Constant
EE2=2.*kf+ks1+(kf-ks1).*phi1; % Nanofluid Constant
CC5=EE1/EE2; % Nanofluid Constant
EE3=2.*kf+ks2-2.*(kf-ks2).*phi2; % Hybrid Constant
EE4=2.*kf+ks2+(kf-ks2).*phi2; % Hybrid Constant
CC6=EE3/EE4; % Hybrid Constant
E4=CC5.*CC6; % k_Hnf/k_f (Equation # 14)
FF1=(1-phi2)*((1-phi1)*rhocpf+phi1*rhocps1)+phi2*rhocps2; % Hybrid to Nanofluid Constant
FF2=1/rhocpf; % Hybrid to Nanofluid Constant
E5=FF1.*FF2; % rhocp_Hnf/rhocp_f (Equation # 14)
% Initial Condition Input
sol = bvpinit(linspace(0,5,10), [1 0 0 0 0 0 0]);
% solution in structure form
sol1 = bvp4c(@bvpexam2, @bcexam2, sol);
x1 = sol1.x;
y1 = sol1.y;
plot(x1, y1(2,:));
figure (1)
hold on
value = deval(sol1,0);
vpa(value,9);
end
function res=bcexam2(y0, yinf)
res=[y0(1);y0(2)-1;y0(4)-1-delta1*y0(5);y0(6)-1; yinf(2);yinf(4);yinf(6)];
end
function dydx = bvpexam2(t,y)
yy1=(E3/E1)*beta*y(2)-(E2/E1)*y(1)*y(3)+(E2/E1)*y(2)^(2)
yy2 = -(chi/E4*(1+epsilon*y(4)))*(E5*y(1)*y(5)+wt*y(5)*y(7)+wb*y(5)^(2)+lambda*(E1*y(3)^(2)+E3*beta*y(2)^(2))+epsilon*E4*y(5)^(2))
yy3 = -a*(y(1)*y(7))-(wt/wb)*yy2
dydx= [y(2);y(3);yy1;y(5);yy2;y(7);yy3]
end
end

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Programming에 대해 자세히 알아보기

제품


릴리스

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by